
Least-squares estimation:
from Gauss to Kalman
The Gaussian concept of estimation by least squares, originally
stimulated by astronomical studies, has provided the basis for a
number of estimation theories and techniques during the
ensuing 170 years-probably none as useful in terms
of today's requirements as the Kalman filter

H. W. Sorenson University of California, San Diego

This discussion is directed to least-squares estimation have made use of since the year 1795, has lately been
theory, from its inception by Gauss' to its modern published by Legendre in the work Nouvelles methodes
form, as developed by Kalman.2 To aid in furnishing pour la determination des orbites des cometes, Paris, 1806,
the desired perspective, the contributions and insights where several other properties of this principle have been
provided by Gauss are described and related to de- explained which, for the sake of brevity, we here omit."
velopments that have appeared more recently (that is, This reference angered Legendre who, with great indigna-
in the 20th century). In the author's opinion, it is en- tion, wrote to Gauss and complained3 that "Gauss, who
lightening to consider just how far (or how little) we was already so rich in discoveries, might have had the
have advanced since the initial developments and to decency not to appropriate the method of least-squares."
recognize the truth in the saying that we "stand on the It is interesting to note that Gauss, who is now regarded
shoulders of giants." as one of the "giants" of mathematics, felt that he had

been eclipsed by Legendre and wrote to a friend saying,3
The earliest stimulus for the development of estimation "It seems to be my fate to concur in nearly all my the-

theory was apparently provided by astronomical studies oretical works with Legendre. So it is in the higher arith-
in which planet and comet motion was studied using tele- metic, . .. , and now again in the method of least-squares
scopic measurement data. The motion of these bodies can which is also used in Legendre's work and indeed right
be completely characterized by six parameters, and the gallantly carried through." Historians have since found
estimation problem that was considered was that of in- sufficient evidence to substantiate Gauss' claim of pri-
ferring the values of these parameters from the measure- ority to the least-squares method, so it is Legendre
ment data. To solve this problem concerning the revolu- rather than Gauss who was eclipsed in this instance and,
tion of heavenly bodies, the method of least squares was indeed, in general.
invented by a "young revolutionary" of his day, Karl
Friedrich Gauss. Gauss was 18 years old at the time of his The method of least squares
first use of the least-squares method in 1795. The astronomical studies that prompted the invention
As happens even today (e.g., the Kalman filter), there of least squares were described by Gauss in Theoria

was considerable controversy in the early 19th century re- Motus. I The following quotation (p. 249) not only de-
garding the actual inventor of the least-squares method. scribes the basic ingredients for Gauss' studies but cap-
The conflict arose because Gauss did not publish his tures the essential ingredients for all other data-processing
discovery in 1795. Instead, Legendre independently in- studies. "If the astronomical observations and other
vented the method and published his results in 1806 in quantities on which the computation of orbits is based
his book Nouvelles me~thodes pour la determ1ination des were absolutely correct, the elements also, whether de-
orbites des cometes. It was not until 1809, in his book duced from three or four observations, would be strictly
Theoria Motus Corporum Coelestium, thatGauss published accurate (so far indeed as the motion is supposed to take
a detailed description of the least-squares method. How- place exactly according to the laws of Kepler) and, there-
ever, in this treatise Gauss mentions Legendre's discus- fore, if other observations were used, they might be
sion of least squares and pointedly refers to his own earlier confirmed but not corrected. But since all our measure-
use (p. 270, Theoria Mot~us)*: "Our principle, which we ments and observations are nothing more than approxi-
* The page numbers here refer to the English translation availa- mations to the truth, the same must be true of all calcula-
able from Dover Publications, Inc. ' tions resting upon them, and the highest aim of all compu-
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tations made concerning concrete phenomena must be to instants of time (t1, t2, . . ., ti) and are denoted at each
approximate, as nearly as practicable, to the truth. But time tk as zk. Suppose that parameters x are to be de-
this can be accomplished in no other way than by a suit- termined from the data and are related according to
able combination of more observations than the number
absolutely requisite for the determination of the unknown Zk = HkX + vk (1)
quantities. This problem can only be properly under- where theVk represent the measurement errors that occur
taken when an approximate knowledge of the orbit has at each observation time. As is seen in Eq. (1), the mea-
been already attained, which is afterwards to be cor- surement data and the parameters x are assumed here to
rected so as to satisfy all the observations in the most be linearly related, thereby making explicit the assump-
accurate manner possible." tion that Gauss indicated was necessary in the foregoing

Let us briefly reconsider some of the ideas contained in quotation.
the preceding statement and relate them to "modern" Denote the estimate of x based on the n data samples
developments. IZ1, z2, *,Z* , } as xi. Then, the residual associated with

1. Gauss refers to the number of observations that are the kth measurement is
absolutely required for the determination of the un- r Z
known quantities. The problem of establishing this mini- rk Zk-Hkxn k = O, 1, n (2)
mum number of observations is currently discussed in The least-squares method is concerned with determin-
terms of the "observability of the system" and is the ing the most probable value of x (that is, x). This most
subject of many papers; see Refs. 4 and 5, for example. probable value is defined as the value that minimizes the

2. Gauss notes that more observations are required sum of the squares of the residuals. Thus, choose x so that
than this minimum because of the errors in the measure-
ments and observations. Thus, he notes the need for Ln = - ZA[Zk-Hx]TW.[zA,-Hkx] (3)
"redundant" data to eliminate the influence of measure- 2 k=0
ment errors. is minimized. The elements of the matrixes Wk are selected

3. Gauss implies that the equations of motion must to indicate the degree of confidence that one can place in
be exact descriptions, and therefore the problem of dy- the individual measurements. As will be explained more
namic modeling of the system is raised. fully in the discussion of the Kalman filter, WI, is equiva-

4. Gauss requires that approximate knowledge of the lent to the inverse of the covariance of the measurement
orbit be available. This is currently required in virtually noise.
all practical applications of Kalman filter theory,6 for Gauss with his remarkable insight recognized that the
example, and implies the use of some linearization pro- simple statement of the least-squares method contains the
cedure. germ of countless interesting studies. As he says in

5. Gauss states that the parameter estimates must Theoria Motus (Ref. 1, page 269): "The subject we have
satisfy the observations in the most accurate manner just treated might give rise to several elegant analytical
possible. Thus, he calls for the residuals (that is, the investigations upon which, however, we will not dwell,
difference between the observed values and the values that we may not be too much diverted from our object.
predicted from the estimates) to be as small as possible. For the same reason we must reserve for another occasion

6. Gauss refers to the inaccuracy of the observations the explanation of the devices by means of which the
and indicates that the errors are unknown or unknowable numerical calculations can be rendered more expedi-
and thereby sets the stage for probabilistic considerations. tious." Judging by the interest in estimation theory over
In doing so, he anticipates most of the modern-day ap- the years, this statement must stand as one of the greatest
proaches to estimation problems. understatements of all time. In passing, we note that the7. Finally, Gauss refers to the "suitable combination" Kalman filter can be rightfully regarded as an efficient
of the observations that will give the most accurate esti- computational solution of the least-squares method.mates. This is related to the definition of the structure of cmutationot of the least-squaresGauss did not merely hypothesize the least-squaresan estimation procedure (i.e., linear or nonlinear filtering) method; it is interesting to consider his discussion of the
and to the definition of the performance criterion. These problem of obtaining the "most probable" estimate as
are extremely important considerations in current dis- an introduction to more modern techniques. First, it is
cussions of estimation problems. significant that he considered the problem from a proba-As stated earlier, Gauss invented and used the method bilistic point of view and attempted to define the best
of least squares as his estimation technique. Let us con- estimate as the most probable value of the parameters.
sider Gauss' definition of the method (Ref. 1, page 260). He reasoned that errors in the measurements would be
He suggested that the most appropriate values for the independent of each other, so the joint-probability density
unknown but desired parameters are the most priobable function of the measurement residuals can be expressed
values, which he defined in the following manner: "... the as the product of the individual density functions
most probable value of the unknown quantities will be
that in which the sum of the squares of the differences be- f(ro, r1, * , r,n) = f(ro)f(r1). * .f(r?) (4)

twee theactullyobseved nd te cmputd vaues Next, he argued that the density f(r1>) would be a normalmultiplied by numbers that measure the degree of preci- density
sion is a minimum." The difference between the observedY
and computed measurement values is generally called the /eW
residual. f(rkc) = Vd)m2et pf2zrs*W5
To make the discussion more precise, consider the (wm2ep[rTW~k 5

following statement of the estimation problem. Suppose although he recognized that one never obtains errors of
that in measurement quantities are available at discrete infinite magnitude, and thus Eq. (5) is not realistic.
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However, he rationalized away this difficulty by stating is minimized. It is well known1 that a necessary and suffi-
(page 259) that: "The function just found cannot, it is cient condition for 'Sn/n to minimize Mn is that the error in
true, express rigorously the probabilities of the errors for the estimate ( Ai,,- - sn/n) be orthogonal to the
since the possible errors are in all cases confined within measurement data
certain limits, the probability of errors exceeding those
limits ought always to be zero while our formula always ESf/nZi] = 0 i = 0, 1, *, n (8)
gives some value. However, this defect, which every This is the Wiener-Hopf equation, which is frequently
analytical function must, from its nature, labor under, is written as
of no importance in practice because the value of our n
function decreases so rapidly, when [rkTW1rJ has ac- E[SnZjTI = E Hn ,E[zjZiT] i = 0, 1, n,n (9)
quired a considerable magnitude, that it can safely be i=0

consideredeasyvanishing." This equation must be solved for the Hn,,j in order to
Gauss proceeded by noting that the maximum of the obtain the gains of the optimal filter. One can rewrite this

probability density function is determined by maximizing as a vector-matrix equation whose solution, theoretically
the logarithm of this function. Thus, he anticipated the speaking, is straightforward. However, the matrix in-
maximum likelihood method, which was introduced by version that is required becomes computationally im-
R. A. Fisher7 in 1912 and has been thoroughly investi- practical when n is large. Wiener and Kolmogorov as-
gated up to the present time. It is interesting that Gauss sumed an infinite amount of data (that is, the lower limit
rejected the maximum likelihood method8 in favor of of the summation is - rather than zero), and assumed
minimizing some function of the difference between esti- the system to be stationary. The resulting equations were
mate and observation, and thereby recast the least- solved using spectral factorization.9l10,12
squares method independent of probability theory. The problem formulated and described here is signifi-
However, in maximizing the logarithm of the independent cantly different from Gauss' least-squares problem. First,
and normally distributed residuals, one is led to the no assumption is imposed that the signal is constant.
least-squares problem defined by Eq. (3). Instead, the signal can be different at each n but can be

Kalman filter theory described statistically by the autocorrelation and cross-Kaletmanwfiltea theor early 19t century and enter the
correlation functions of the signal and measurement data.

Let us now leave the early l9th century and enter the Second, instead of arguing that the estimate be the most
20th century. Consider, briefly, some of the major de- probable, a probabilistic version of the least-squares
velopments of estimation theory that preceded the intro- method is chosen as the performance index.
duction of the Kalman filter. As already mentioned, R. A. It has been found that Eq. (9) is solved in a relatively
Fisher introduced the idea of maximum likelihood esti- straightforward manner if one introduces a "shaping
mation and this has provided food for thought throughout filter"'3" 4 to give a more explicit description of the signal.
the subsequent years. Kolmogorov9 in 1941 and Wiener'0 In particular, suppose that the signal and measurement
in 1942 independently developed a linear minimum processes are assumed to have the following structure.
mean-square estimation technique that received con- The measurements are described by
siderable attention and provided the foundation for the
subsequent development of Kalman filter theory. Zi = Si + vi

In Wiener-Kolmogorov filter theory, Gauss' inference = Hixi + vi (10)
that linear equations must be available for the solution
of the estimation problem is elevated to the status of an where vi is a white-noise sequence (that is, vi is both
explicit assumption. There are, however, many conceptual mutually independent and independent of xi). The
differences (as one would hope after 140 years) between system state vector xi is assumed to be described as a
Gauss' problem and the problem treated by Wiener and dynamic system having the form
Kolmogorov. Not the least of these is the fact that the x?+±= D+l ix (11)
latter considered the estimation problem when measure-
ments are obtained continuously, as well as the discrete- where w, represents a white-noise sequence. Note that if
time problem. To maintain the continuity of the present the noise wi is identically zero and if cIb+±,i is the identity
discussion, attention shall be restricted to the discrete matrix, then the state is a constant for all i and one has re-
formulation of Wiener-Kolmogorov (and later Kalman) turned basically to the system assumed by Gauss. With
filter theory. the system described by Eqs. (10) and (11), the known
Consider the problem of estimating a signal sn, possibly statistics for the initial state xo, and the noise sequences

time-varying, from measurement data (zo, zi, ..., Zn), wi}and { vi }, one can proceed to the solution of Eq. (9).
where the sn and the { zi I are related through knowledge Although the weighting function for the filter can be
of the cross-correlation functions. Assume that the esti- determined, a new solution must be generated for each n.
mate of sn, say Sn/n, is to be computed as a linear combina- It seems intuitively reasonable that estimates of sn±l (or
tion ofthe zi: Xn+i) could be derived, given a new measurement Zn+i,

n ~~~~~~~fromSn/n and Zn±l rather than from Z0, Zi, * **zn, Zn±i,
Sn/n = Z Hn,jZi (6) since ^Sn/n 15 based on the data (zo, Zi, .., Zn). In 1955

= 0 J. W. Follin"5 at Johns Hopkins University suggested a
The "filter gains" Hn,i are to be chosen so) that the recursive approach based on this idea, which he carried

mean-square error is minimized; that is, choose the out for a specific system. This approach had immediate
Hn,j in such a way that appeal and essentially laid the foundation for the de-

velopments that are now referred to as the KaIman filter.
Mn = E[(sn -Sn/n)T(Sn -Sn/n)] (7) It is clear (for example, see Ref. 16, p. 129) that Follin's
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work provided a direct stimulus for the work of Richard where akj is the Kronecker delta.
Bucy, which led to his subsequent collaboration with An estimate X0k, of the state xk, is to be computed from
Kalman in the continuous-time version of the filter the data zo, zi, ** , Zk so as to minimize the mean-square
equations. 17 As frequently happens, the time was ripe for error in the estimate. The estimate that accomplishes this
this approach, because several other people independently is to be computed as an explicit function only of the
investigated recursive filter and prediction methods; measurement zk and the previous best estimate x -,10k-1-
see, for example, Refs. 18 and 19. Also, the method of This approach leads to a recursive solution that provides
stochastic approximation20 was introduced and being an estimate that is equivalent to the estimate obtained by
studied for related problems2' during this period. processing all of the data simultaneously but reduces the
Kalman published his first paper on discrete-time, re- data-handling requirements. The estimate of the signal

cursive mean-square filtering in 1960.2 It is interesting to
note that, analogous to the Gauss-Legendre squabble Sk- = HIxk (12)
concerning priority of the least-squares method, there is a is given by
difference of opinion concerning the originator of the
Kalman filter. Peter Swerling published a RAND Sk/k= H1xXk,k (13)
Corporation memorandum in 195818 describing a re- The solution of this recursive, linear, mean-square
cursive procedure for orbit determination. Of further estimation problem can be determined from the or-
interest is the fact that orbit determination problems thogonality principle given in Eq. (8), as well as in a large
provided the stimulus for both Gauss' work and more variety of other ways, and is presented below. This sys-
modern-day developments. Swerling's method is es- tem of equations has come to be known as the Kalman
sentially the same as Kalman's except that the equation filter. The estimate is given as the linear combination of
used to update the error covariance matrix has a slightly the estimate predicted in the absence of new data, or
more cumbersome form. After Kalman had published his
paper and it had attained considerable fame, Swerling22 Xklk-1 =0kk1lXk_l/1-1
wrote a letter to the AIAA Journal claiming priority for and the residual rk. Thus, the mean-square estimate is
the Kalman filter equations. It appears, however, that his
plea has fallen on deafears. Xk/l = 40,,k-1Xk-/1k-1 + K0[Zk -H4C,k01Xk,101kJ1 (14)
The developments beginning with Wiener's work and The gain matrix Kk can be considered as being chosen toculminating with Kalman's reflect fundamentally the m i E )T(Xo - Xoio)J and is given byminimize E[(x,-X/k)T-lk)]adl gvnbchanges that have occurred in control systems theory

during this period. In the "classical control theory," the Kk = Pklk^-lH0(H0P010-2H0T + R0)-1 (15)
emphasis was on the analysis and synthesis of systems in The matrixPk10, is the covariance of the error in the pre-
terms of their input-output characteristics. The basic dicted estimate and is given by
tools used for these problems were the Laplace and Four-
ier transforms. The original formulation and solution of Pk0l1 = E[(xo -x^00-1)(xk- Xk/k-)T] (16)
the Wiener-Kolmogorov filtering problem is consistent
with this basic approach. More recent developments have = , + Q¢ t (17)
stressed the "state-space" approach, in which one deals The P0lk is the covariance of the error in the estimate
with the basic system that gives rise to the observed out-
put. It represents in many ways a return to Gauss' ap-

A

proach, since he referred to the dynamic modeling PkOlk =E[xk - xk/k)(xk - X/k)T] (18)
problem as noted earlier. Also, the state-space approach Pklk-1-KkHkPklk-l (I9)makes use of difference and differential equations rather
than the integral equations of the classical approach. Equations (14), (15), (17), and (19) form the system of
Although the two approaches are mathematically equations comprising the Kalman filter.2'6
equivalent, it seems to be more satisfying to work with
differential equations (probably since dynamical systems Kalman filter theory-a perspective
are generally described in this manner). Let us relate elements of this problem to Gauss' earlier
At this point, let us summarize the Kalman filtering arguments. First, Kalman assumes that the noise is

problem and its solution. The system that is considered is independent from one sampling time to the next. But
composed of two essential ingredients. First, the state is it is clear from Eq. (5) that this is equivalent to assuming
assumed to be described by that the residual (zi, - HkXk) iS independent between

Xk.+1 =-+1,k0Xk + Wk (11') sampling times and therefore agrees with Gauss' as-
sumption. Next, the noise and initial state are essentiallyand the measurement data are related to the state by assumed by Kalman to be Gaussian. The linearity of the

zo = H0x0 ± V0 (10') system causes the state and measurements to be Gaussian
at each sampling time. Thus the residual is Gaussian, as

wvhere {w0 } and { v, represent independent white-noise Gauss assumed. Therefore, one sees that the basic as-
sequences. The initial state xo has a mean value xo-i_ and sumptions of Gauss and Kalman are identical except that
covariance matrix Po0_1 and is independent of the plant the latter allows the state to change from one time to the
and measurement noise sequences. The noise sequences next. This difference introduces a nontrivial modification
have zero mean and second-order statistics described by to Gauss' problem but one that can be treated within a

least-squares framework if the noise { wk } is considered asE[v.vj T] = R0e5,. E[w0w 2'] =Q>, the error in the plant model at each stage. In particular,
E[v,wj T] = 0 for all k,j one can formulate the least-squares problem as that of
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choosing the estimates Xk/k and the plant errors Wk to Further, one can analyze the behavior of the estimates
minimize the modified least-squares performance index. within the general framework and thereby obtain signifi-

1 cant insights into the results obtained from computa-
Ln= - (xo- a)TM&-'(xo- a) tional studies. There has been a veritable "explosion" of

2 theoretical papers that have recognizable roots in
l n Kalman's work and thereby testify to the richness of his

± - E (zi - Hix)TRi-j(zi -Hixi) formulation.
i=° Finally, a third reason for the popularity might be

+ - E wiTQi-lwi (20) considered, although it is less tangible in character than
2 i = o the other two. It is worth noting that Kalman recognized

subject to the constraint the potential of his results, whereas others working in
the area either did not or were not as successful in com-

Xk = 4'k,k-lXk-1 + Wk-I (21) municating the intrinsic worth of recursive filtering to
others. One cannot overemphasize the value of recog-Note that the first term essentially describes the uncer- ..

tainty in the initial state. If one has no a priori informa- nizing and successfully communicating significant new
tion, then Mo-' is identically zero and the term vanishes. results.The Kalman filter, which assumes linear systems, has

equation,found its greatest application to nonlinear systems. It isis identically zero so this term vanishes. Then Eq. (20) is g u
seen to reduce to Gauss' least-squares problem, as given an appoxmaesolto(sGassproed andgb
in Eq. (3). The weighting matrices Mo-', Ri-', and Qi-l of an approximate solution (as Gauss proposed) and by
represent the matrix inverses of the a priori covariance describing the deviations from the reference by linear

matrices if a probabilisti interp n is d . equations. The approximate linear model that is obtained
matricesican probtabiliar rstici tion is dhesiroledo. forms the basis for the Kalman filter utilization. Com-One can obtain a recursive solution to the problem of ol,sc plctosar copihdwt ra
minmiin 20 by noigta monly, such applications are accomplished with greatminmilzing (20) by noting that

success but, on occasion, unsatisfactory results are ob-
-1 tained because a phenomenon known as divergence oc-L. = Ln-1 + - (Zn- HnX)Rn (zn-Hnxn) curs.24,25

Divergence is said to occur when the error covariance
+ - W. ITQn-1-4.-I (22) matrix Pk Computed by the filter becomes unjustifiably2 small compared with the actual error in the estimate.

and by then proceeding inductively starting with n = 0 to When Pk becomes small, it causes the gain matrix to be-
obtain recursion relations for the least-square estimate.23 come too small and new measurement data are given too
If this is done, the Kalman filter equations are obtained. little weight. As a result, the plant model becomes more
It is then indicated that, for this linear problem, de- important in determining the estimate than are the data
terministic least-squares estimation theory and the and any errors in the model can build up over a period of
probabilistically based mean-square estimation theory are time and cause a significant degradation in the accuracy
equivalent. Further, the problem of minimizing Eq. (22) of the estimate. This happens most commonly when the
is seen to give the most probable estimate for this system. plant is assumed to be error-free (i.e., Wk = 0 for all k).

Since the Kalman filter represents eissentially a re- If the model were perfect and contained no random or
cursive solution of Gauss' original least-squares problem, model errors, then the vanishing of the error covariance
it is reasonable to consider the substance of Kalman's matrix would be desirable and would represent the fact
contribution and attempt to put it into perspective. It that the state could be determined precisely if sufficient
cannot be denied that there has been a substantial con- redundant data were processed. However, it is naive at
tribution if for no other reason than the large number of best to assume that any physical system can be modeled
theoretical and practical studies that it has initiated. I precisely, so it is necessary to account for model errors.
suggest that the contribution is significant for two basic Thus, it has become good practice6 always to include the
reasons: plant error or noise term Wk. It should be emphasized

1. The Kalman filter equations provide an extremely that divergence does not occur because of any fault of
convenient procedure for digital computer implementa- the filter. If the system were actually linear, Kalman4
tion. One can develop a computer program using the showed that the filter equations are stable under very
Kalman filter in a direct manner that (initially, at least) reasonable conditions. Thus, the divergence is a direct
requires little understanding of the theory that led to their consequence of the errors introduced by the linear ap-
development. There are well-established numerical proximation.
procedures for solving differential equations, so the To reduce approximation errors, the so-called "ex-
engineer does not have to be worried about this problem. tended Kalman filter" is generally used in practice. In
By contrast, the solution of the Wiener-Hopf equation this case the nonlinear system is linearized by employing
and the implementation of the Wiener-Kolmogorov the best estimates of the state vector as the reference
filter must be regarded as more difficult or there would values used at each stage for the linearization. For
have been no need for the Kalman filter. Since Gauss was example, at time t1-s, the estimate x1-111--- is used as the
very concerned with the computational aspects of least- reference in obtaining the transition matrix bkFl This
squares applications, one can imagine that he would approximation is utilized in Eq. (17) to obtain the Kal-
appreciate the computational benefits of the Kalman man error covariance P,^k-1. The estimate is given by
filter.

2. Kalman posed the problem in a general framework Xi/i- = fi(xi-i,i-5) (23)
that has had a unifying influence on known results. where fk is used to denote the nonlinear plant equation.
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1962.
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