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Davi Antônio dos Santos

FAULT-TOLERANT STATE ESTIMATION OF

LINEAR GAUSSIAN SYSTEMS SUBJECT TO

ADDITIVE FAULTS

Thesis approved in its final version by signatories below:

Prof. Takashi Yoneyama

Advisor

Prof. Celso Missaki Hirata

Head of the Faculty of the Department of Graduate Studies

Campo Montenegro
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Resumo

Devido à demanda por atributos tais como segurança, manutenibilidade e confiabili-

dade em dispositivos atuais de engenharia, verifica-se uma crescente investigação sobre o

uso de métodos de tolerância a falhas em projetos de sistemas de controle. Em particular,

caso os estados do sistema não possam ser diretamente medidos pelos sensores existentes,

a adoção de um método tolerante a falhas para estimação de estados é fundamental. Neste

contexto, a presente tese formula um problema de estimação de estados que consiste na

estimação conjunta da falha e dos estados do sistema de forma recursiva. Considera-se que

a dinâmica do sistema possa ser descrita por um modelo em espaço de estados, discreto

no tempo, com rúıdos Gaussianos e sujeito a falhas aditivas que afetem tanto a equação

de estados quanto a de medidas. Considera-se que a sequência de vetores de falha seja

parametrizável por três parâmetros: a magnitude da falha, o instante de ińıcio da falha,

e o ı́ndice do modo da falha. Adicionalmente, considera-se que esses parâmetros sejam

realizações de variáveis aleatórias (VA) definidas de forma a representar conhecimento a

priori sobre posśıveis falhas. Para tratar o problema acima, propõe-se uma abordagem

de filtragem de dois estágios (FTTS), da qual três diferentes filtros FTTS são derivados

levando-se em conta três caracterizações alternativas da VA subjacente à magnitude da

falha. Com base em simulação computacional, um dos filtros é ilustrado num esquema de

controle preditivo tolerante a falhas para controle de atitude de um satélite ŕıgido.



Abstract

Owing to the need for the satisfaction of attributes such as safety, maintainability,

and reliability in modern critical engineering devices, the design of automatic feedback

control systems has increasingly demanding fault-tolerant methods. In particular, if the

system states cannot directly be measured by the available suite of sensors, a fault-tolerant

state estimation method turns out to be of paramount importance for achieving fault

tolerance. In this context, the present thesis formulates a fault-tolerant state estimation

(FTSE) problem consisting of a joint state and fault estimation of linear systems subject

to additive faults. The system is described by a discrete-time linear Gaussian state-

space model, where the fault appears as unknown inputs affecting both the state and

measurement equations. The sequence of fault inputs is assumed to be parameterizable by

three fault parameters: the fault magnitude, the fault instant, and the fault mode index.

Moreover, these parameters are treated as unknown realizations of random variables (RV)

that are defined so as to account for prior knowledge about possible faults. For tackling

the above FTSE problem, the present work introduces a fault-tolerant two-stage (FTTS)

filtering approach, from which three different FTTS filters are derived by considering

three plausible alternative characterizations of the fault magnitude RV. On the basis of

computational simulations, one of the FTTS filters is illustrated on a fault-tolerant model

predictive control (MPC) scheme for satellite attitude control.
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1 Introduction

This thesis is concerned with the fault-tolerant state estimation of discrete-time linear

Gaussian systems subject to additive faults. The present chapter is organized in the

following manner. Section 1.1 gives some motivations for investigating the fault-tolerant

state estimation problem. Section 1.2 presents a historical background on state estimation

of linear systems subject general to unknown inputs. Section 1.3 outlines the following

chapters. Finally, Section 1.4 pinpoints the main contributions of the thesis.

1.1 Motivation

The Feedback Control Theory for linear systems with sensors, actuators, and internal

components that do not undergo any fault is well-established in the literature (FRANKLIN

et al., 2010; SHINNERS, 1992; OGATA, 1970). However, in practical systems, faults may

arise due to various causes such as component ageing, wear, wrong design, and lack of

maintenance (ISERMANN, 2006). The faults could degrade the system performance or

even interrupt its operation. Primarily motivated by a growing demand on dependability

requirements of critical engineering systems, the Fault-Tolerant Control (FTC) area has

experienced intensive development since the early 1980s. Among the literature in the

field, one can find the review papers: (PATTON, 1997; ZHANG; JIANG, 2003; BLANKE et

al., 1997); and the books: (BLANKE et al., 2003; MAHMOUD et al., 2003).

A FTC system is defined as a setting that can maintain an acceptable degree of

performance in the presence of faults (MAHMOUD et al., 2003). In general, the FTC

methods fall into two categories (PATTON, 1997): passive and active. The passive methods
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rely on robust control techniques to design a fixed control law that makes the system

almost insensitive to a limited class of anticipated faults. On the other hand, in the active

methods, the control law is updated online. In order to accomplish adaptation, a Fault

Diagnosis module is used to provide online information about the current fault, while a

Reconfiguration Mechanism is used for properly modifying the control law. The active

approach is particularly suitable for tackling unanticipated faults, which in fact are quite

common in practice (ZHANG; JIANG, 2003).

FIGURE 1.1 – Block diagram of a typical active FTC system.

Figure 1.1 shows a block diagram of a typical active FTC system that may undergo

actuator faults, fA, sensor faults, fS, and plant component faults, fP . Suppose that

the illustrative system aims at making the states of the plant, x, to track the specified

reference trajectory, rx. To attain this goal, the following subsystems may be employed:

• a state estimator, which provides the estimate, x̂, of the hidden state, x;

• a controller, which implements a feedback control law from which the control input,

u, is computed;

• a fault diagnosis module, which provides an estimate, f̂ , of a fault; and

• a reconfiguration mechanism, which, in the presence of a fault, will properly recon-

figure both the state estimator and the controller in order to accommodate the fault
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effects.

As illustrated in Figure 1.1, the fault diagnosis and the state estimation procedures

are both carried out on the basis of data obtained from the control inputs, u, and from

the output sensors, y. Henceforth, the main guideline of the present thesis is to unify

the state estimation and the fault diagnosis procedures into a single task, which is herein

called Fault-Tolerant State Estimation. One could realize that in spite of the need for

reliable state estimators to design fault-tolerant control systems, rather little attention

has been paid on the joint state and fault estimation problem.

Regarding the applicability of FTSE techniques, a satellite Attitude Determination

System (ADS) is a notable example of a mission-critical engineering device. The ADS

is essentially composed of sensors (e.g., solar sensors, star sensors, magnetometers, etc.)

and an attitude estimation method implemented in the onboard computer of the satellite.

Consider an hypothetical satellite equipped with a camera, which is required to be pointed

towards the Earth throughout the mission lifetime. In this case, to satisfy the mission

requirements, the ADS needs to provide the control system with sufficiently accurate

attitude estimates, even in the presence of sensor faults.

1.2 Historical background

The Estimation Theory has its origin in the Least-Squares (LS) method, which was

invented by the mathematician Johann Carl Friedrich Gauss around 1795 to estimate the

orbit of Ceres (KAILATH, 1974). The LS method turns out to be suitable for estimating

the constant parameters of a signal model from a set of observations by minimizing the

residuals between the observations and their theoretically expected values. It is a deter-

ministic method in the sense that it does not rely on any probabilistic model of either the

data or the prior knowledge about the unknown parameters. Nevertheless, in his work,

Gauss had already made conjectures on most of the essential characteristics of the modern

stochastic approaches to signal estimation (SORENSON, 1970).
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About one and a half century after the Gauss’ work on the LS method, the stochastic

approach to the signal estimation problem began to be investigated mainly by WIENER

(1949) and KOLMOGOROV (1941). In their theory, the signal and the observation noise

are both assumed to be stationary stochastic processes with known spectral densities.

The optimal Minimum Mean Squared Error (MMSE) solution to this problem is given by

the Wiener filter, which is a linear time-invariant filter (KAILATH et al., 2000). During the

1950s, some researchers attempted to extend the Wiener filter so as to make it appropriate

for estimating nonstationary and multivariable signals. However, the resulting methods

often required cumbersome calculations (GELB, 1974).

One decade later, the well-known Kalman filter (KF) (KALMAN, 1960) was proposed

as a new approach to the signal estimation problem. The KF turned out to be a natural

form of dealing with nonstationary and multivariable signals. The Kalman’s work changed

the conventional formulation of the signal estimation problem by describing the signal

dynamics and observations with a linear state-space model driven by white Gaussian

noises. Nowadays, the KF (as well as its suboptimal extensions) is widely used in numerous

fields such as navigation, control, signal processing, finance, communication, etc. (BAR-

SHALOM; LI, 1993; GELB, 1974; JAZWINSKI, 1970; KAILATH et al., 2000; SORENSON, 1985;

ANDERSON; MOORE, 1979).

In order to perform optimally in the MMSE sense, the KF requires the availability of

an accurate linear Gaussian model for describing the dynamics of the system of interest.

However, in practice, the system might be subject to environmental changes or even to

faults in its sensors, actuators, or internal components. Such events may cause a significant

mismatch between the real system behavior and its model. In many applications, this

system-model mismatch can be represented by changing parameters. In such cases, the

simpler form of tackling the estimation problem consists of augmenting the state-space

model so as to include the changing parameters as extra state components. Hence, the

faulty parameters and the original states can jointly be estimated with an augmented

KF. This method is effective only when the number of changing parameters is small and,

additionally, their changes can be well-represented by constant biases [see, e.g., (BAR-
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SHALOM; LI, 1993), pp. 484–488]. The following subsections review the literature on the

three most common approaches to tackle the state estimation problem for linear systems

subject to unknown inputs such as additive faults.

1.2.1 Recursive linear minimum variance unbiased approach

Consider a linear system subject to additive faults that can be represented by unknown

constant inputs into both the state and measurement equations. As argued before, the

augmented KF can appropriately be used to estimate the states of such a system. In order

to improve computational efficiency, FRIEDLAND (1969) proposed a two-stage filter that

decomposes the augmented KF into a bias estimator and a bias-free state estimator. Since

the Friedland’s estimator is equivalent to the augmented KF, it indeed corresponds to the

optimal MMSE estimator. Considerable attention was paid to this method, which was

rederived and extended in various aspects (IGNAGNI, 1981; IGNAGNI, 1990; HSIEH; CHEN,

1999; IGNAGNI, 2000; MENDEL, 1976; CAGLAYAN; LANCRAFT, 1983; KIM et al., 2009).

In particular, the work by IGNAGNI (1981) eliminated the requirement of statistical un-

correlation between the state and the bias at the filter initialization, which had contrarily

been taken into account by Friedland. Later, some investigators dealt with slowly vary-

ing inputs by describing them as discrete-time random-walk processes (IGNAGNI, 1990;

HSIEH; CHEN, 1999; IGNAGNI, 2000). It is worth mentioning that the Friedland’s idea has

also been extended to nonlinear systems, though in a suboptimal manner (MENDEL, 1976;

CAGLAYAN; LANCRAFT, 1983; ZHOU et al., 1993; KIM et al., 2009).

In order to treat varying parameters without relying on a random-walk model, a Linear

Minimum-Variance Unbiased (LMVU) estimator was proposed by KITANIDIS (1987). Al-

though this work did not address the global optimality, the resulting estimator has shown

a satisfactory performance in a practical environmental application. In this method, only

the state equation was assumed to be affected by the unknown inputs. Later, DAROUACH

et al. (2003) proposed an extension that included the case in which the output measure-

ments are also subject to unknown inputs. None of the above methods deals with the
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explicit estimation of the unknown inputs.

The above LMVU estimators have recently been extended to carry out the joint state

and input estimation (GILLIJNS; MOOR, 2007a; GILLIJNS; MOOR, 2007b; HSIEH, 2009).

Firstly, GILLIJNS; MOOR (2007a) considered the problem in which the unknown input

affects only the state equation. Secondly, in a separate paper, the same authors treated

the more general problem in which the input is also assumed to affect the measurement

equation (GILLIJNS; MOOR, 2007b). In these works, a linear recursive two-stage estimator

structure was established. In such structure, the input estimate is computed in stage

1 based on the observation of a single innovation vector. Then, the state estimate is

computed in state 2 by an input-corrected form of the KF. Later, the above method was

improved by eliminating a full-rank condition on the direct feedthrough matrix (HSIEH,

2009).

More recently, HMIDA et al. (2010) proposed an estimator specifically suitable for the

joint state and fault estimation. In this method, the system is assumed to be subject to

additive faults on both the state and measurement equations. Additionally, the system

is allowed to undergo state disturbances. The estimator consists of a recursive filter that

provides LMVU estimates of the states and faults, while decoupling the effects of the state

disturbances from the filter output.

1.2.2 Decision-theoretic approach

A decision-theoretic approach to the problem of state estimation of systems subject

to unknown additive inputs has also been considered by some investigators, specially dur-

ing the 1970s and 1980s (MCAULAY; DENLINGER, 1973; WILLSKY; JONES, 1976; SANYAL;

SHEN, 1974; BUENO et al., 1976; CHANG; DUNN, 1979; CHAN et al., 1979; WAHNON et al.,

1991; WILLSKY, 1986; NARASIMHAN; MAH, 1988). The essential element of the decision-

theoretic methods consists of a KF implemented with a model that neglects the presence

of the unknown inputs. In general, these methods involve two interconnected stages. The

first stage carries out input detection and estimation by statistically processing the inno-
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vation sequence of the KF. On the other hand, the second stage performs state estimation

by correcting the KF outputs by using the input estimates provided by the first stage.

The method proposed by WILLSKY; JONES (1976) is one of the most popular of this

category. It considers the class of linear Gaussian systems that are subject to an impulsive

input whose magnitude and instant of occurrence are both unknown. To detect and

estimate the input, this method processes the innovation sequence of the KF by using the

Generalized Likelihood Ratio (GLR) test. Later, this method was extended in order to

include more general input forms, such as stepwise, sinusoidal, etc. (NARASIMHAN; MAH,

1988). This method has been applied to the fault diagnosis of process control systems

(PRAKASH et al., 2002; PRAKASH et al., 2005). Particularly, PRAKASH et al. (2005) proposed

a fault-tolerant model predictive controller (FTMPC) that integrates the GLR method

with a conventional state-space formulation of the MPC.

To implement a decision-theoretic method, the input form (impulsive, stepwise, si-

nusoidal, etc.) needs to be previously hypothesized. Therefore, such methods indeed

rely on prior knowledge concerning the dynamics of the unknown inputs. However, it is

worth noting that none of the mentioned methods has considered the availability of any

prior knowledge concerning the values of the input parameters (magnitude and instant of

occurrence), which are supposed to be unknown deterministic constants.

1.2.3 Bayesian filtering approach

The Bayesian filtering approach to solve the problem of joint fault and state estima-

tion has recently attracted attention of some investigators (FREITAS, 2002; VERMA, 2004;

ORCHARD, 2007; RAPOPORT; OSHMAN, 2004b; RAPOPORT; OSHMAN, 2004a; ZHANG; LI,

1998; SIGALOV; OSHMAN, 2010). These works described the fault modes as discrete

states and devised appropriate schemes for computing the posterior PDF of the hybrid

continuous-discrete states in a recursive filtering manner. The explicit implementation of

such filters turns out to be quite difficult, requiring some kind of approximation.

In the work by FREITAS (2002), a Rao-backwellized particle filter (PF) is employed to
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tackle the joint state estimation and fault diagnosis of systems subject to multiplicative

(rather than additive) faults. The discrete states are assumed to evolve as a finite-state

Markov process. In this scheme, the PDF of the discrete states is approximated by

using the Sequential Importance Sampling (SIS) method (DOUCET et al., 2001), while the

PDF of the continuous states are approximated by a Gaussian mixture via a bank of

KFs. As verified by the author himself, this method does not perform well when the

fault is considered to be a very rare event. Moreover, this method is not able to deal with

faults of unknown magnitudes. Some other PFs that outperform the aforementioned Rao-

backwellized PF when dealing with rare events have appeared in the literature (VERMA,

2004; RAPOPORT; OSHMAN, 2004b; ORCHARD, 2007). However, the fault modes need

to be exactly hypothesized in all of these methods, since they cannot treat faults with

unknown magnitudes.

Besides the PF technique, the Interacting Multiple Model (IMM) estimator has also

been adopted by some author with the purpose of approximating the Bayesian filter for

joint fault and state estimation (ZHANG; LI, 1998; RAPOPORT; OSHMAN, 2004a; SIGALOV;

OSHMAN, 2010). In these methods, the dynamical behavior of the fault modes is also

described by a Markov process. Again, none of these works addressed faults with unknown

magnitudes.

1.3 Text organization

The remainder of the thesis is organized in the following form:

• Chapter 2 formally defines the Fault-Tolerant State Estimation (FTSE) problem as

being the joint state and fault estimation of discrete-time linear Gaussian systems

subject to additive faults. Particularly, the faults are considered to be realizations

of a structured random sequence parameterized by three fault parameters: the fault

magnitude, the fault instant, and the fault mode index. This is the main problem

with which the thesis is concerned.
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• Chapter 3 reviews the theoretical background necessary to understand the technical

terms, notations, and some existing results on the Statistical Processing Theory

that will be used throughout the thesis. It focuses on three topics: (i) parameter

estimation, (ii) state estimation of linear Gaussian systems, and (iii) detection of

signals corrupted by Gaussian noise.

• Chapter 4 proposes a two-stage recursive filtering approach to solve the FTSE prob-

lem defined in Chapter 2. By considering different ways of modeling the fault pa-

rameters, three estimators are derived. The first stage of the estimators carries

out fault estimation by processing the innovation sequence of a Kalman filter(KF)

implemented with the model of the system operating under fault-free conditions.

The second stage provides estimates of the state by correcting the KF’s output

using the fault estimate computed in the first stage. The proposed estimators are

called Fault-Tolerant Two-Stage (FTTS) filters. They can be classified as decision-

theoretic methods.

• Chapter 5 illustrates one of the FTTS filters by applying it to a simulation-based

Attitude Control System (ACS) of a rigid satellite. The control strategy adopted

therein consists of a state-space formulation of the Model Predictive Control (MPC)

that is properly modified in order to compensate for the fault effects. The resulting

overall scheme is a Fault-Tolerant Model Predictive Control (FTMPC) method that

can be used in other control applications.

• Chapter 6 presents the conclusions of the thesis and suggests some topics for future

works.

1.4 Contributions of the thesis

The present thesis contributes to the field of state estimation of linear systems subject

to additive faults. The main contributions are the following:
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• A mathematical model for describing fault-prone dynamic systems. It is a discrete-

time linear Gaussian state-space model subject to additive faults. These faults are

assumed to be realizations of a structured random sequence parameterized by: a

fault magnitude, a fault instant (the onset of the fault), and a fault mode index.

Moreover, a Fault-Tolerant State Estimation (FTSE) problem is defined as the joint

state and fault estimation of systems described by the proposed fault-prone system

model. For details, see Section 2.1.

• A two-stage filtering approach to solve the FTSE problem, leading to three Fault-

Tolerant Two-Stage (FTTS) filters. The FTTS filters account for the three alter-

native forms established to represent prior knowledge about the fault parameters.

The FTTS filters belong to the class of Decision-Theoretic approaches to the joint

state and input estimation [Subsection 1.2.2]. For details, see Chapter 4.

• A scheme for fault-tolerant satellite attitude control based on a Model Predictive

Control (MPC) strategy. This scheme integrates an FTTS filter with a state-space

formulation of the MPC that is properly modified in order to compensate for the

fault effects. For details, see Chapter 5.

Some partial results of the thesis were hitherto published in the following papers:

(SANTOS; YONEYAMA, 2009), (SANTOS; YONEYAMA, 2010), and (SANTOS; YONEYAMA,

2011).



2 Problem Statement

This chapter is concerned with a formal definition of the main problem treated in the

present thesis. This is a state estimation problem for linear Gaussian systems subject

to additive faults. Most of the literature on state estimation of this class of systems

do not take into account any prior knowledge about the faults (WILLSKY, 1986; HMIDA

et al., 2010; GILLIJNS; MOOR, 2007b). On the contrary, this chapter considers that the

additive fault is a structured random sequence parameterized by: a fault magnitude, a

fault instant, and a fault mode index. These parameters are assumed to be realizations of

random variables (RV) with known distributions. The chapter is organized in the following

manner. Section 2.1 formally defines a Fault-Tolerant State Estimation (FTSE) problem

as being the joint state and input estimation for a fault-prone system whose model is

stated at the beginning of the section. Section 2.2 presents some comments and insights

into the proposed fault-prone system model. Finally, Section 2.3 summarizes the present

chapter.

2.1 Fault-tolerant state estimation problem

Let the dynamics of a fault-prone system be described by the following discrete-time

linear Gaussian state-space model:

xk+1 = Akxk + Bkuk + Γkwk + Ξkfk (2.1)
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yk = Ckxk + vk + Θkfk (2.2)

where xk ∈ Rnx is the state vector; yk ∈ Rny is the vector of observed outputs; uk ∈ Rnu

is the vector of control inputs; fk ∈ Rnf is the fault vector. The fault sequence, {fk},

is assumed to be a realization of a particular structured random sequence, which will be

defined below; Ak,Bk,Γk,Ck,Ξk, and Θk are known deterministic matrices with appro-

priate dimensions; {wk} and {vk} are mutually independent, zero-mean, white, Gaussian

sequences with known covariances, Qk and Rk, respectively. These sequences are also

assumed to be statistically independent of the initial state x0, which is modeled as a

Gaussian RV with a known mean, x̄0, and a known covariance, P0.

Definition 2.1 Let {fk} be a structured sequence with the k-th term given by

fk = bfej(s)ϑ
(s)(k − kf ), (2.3)

where bf ∈ R is the fault magnitude, kf ∈ Z+ is the fault instant, and s ∈ I , {1, 2, ..., h}

is the fault mode index, with h being the number of fault modes. The quantities bf , kf , and

s are generally referred to as the fault parameters. The unit vector ej(s) ∈ Rnf represents

the fault location. The map ϑ(s) : Z 7→ R is a discrete-time function specifying the fault

form. It satisfies the condition ϑ(s)(l) = 0, ∀l < 0.

The fault parameters appearing in the above definition have the following meanings.

The fault magnitude, bf , quantifies the severity of the fault in the sense that the larger it

is, the graver will be its effects on the system behavior. The fault instant, kf , corresponds

to the onset time of the fault, i.e., fk = 0, ∀k < kf . Finally, the fault mode index, s, has

the role of identifying both the fault location and the form of the fault sequence along

the time (e.g., stepwise, ramp-type, sinusoidal, etc.). Subsection 2.2.1 will present some

examples of fault modes as well as their effects on the output measurements of a particular

system.

In order to account for prior knowledge about the fault parameters, s, kf , bf , they
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are assumed to be realizations of RVs with known distributions. Before specifying such

probability distributions, it is necessary to make some considerations. Suppose that the

overall system contains a fault detection module that triggers an alarm signal at the oc-

currence of some fault. Hereafter, the time instant of such alarm occurrence will be called

alarm instant and will be denoted by ka. Now, the following assumption establishes a

relationship between the true fault instant, kf , and the alarm instant, ka.

Assumption 2.2 Define the alarm delay kδ , ka − kf . Assume that the alarm sig-

nal provided by the fault detection module is always correct, and that the corresponding

alarm delay satisfies the condition kδ < M2, where M2 ∈ Z+, M2 < ka.

Assumption 2.3 Assume that the fault parameters (bf , kf , and s) are realizations of the

mutually independent RVs characterized by the following PDFs/PMFs1:

• Fault magnitude: Three cases are considered in this work,

1. Gaussian case:

p (bf |s) = Nbf
(
µs, σ

2
s

)
, bf ∈ R, (2.4)

where µs and σ2
s are, respectively, the mean and the variance of the s-mode

conditioned PDF p (bf |s).

2. Gamma case:

p (bf |s) = Gbf (αs, βs) , bf ∈ R+, (2.5)

where αs and βs are, respectively, the shape and the scale parameters of the

s-mode conditioned PDF p (bf |s).

3. Discrete case:

m (bf |s) = Kbf (P (bL|s), P (bM |s), P (bH |s)) , bf ∈ {bL, bM , bH} , (2.6)

1The List of Symbols given at the beginning of the thesis presents the explicit forms of the PDFs/PMFs
mentioned here.
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where the three possible values bL, bM , and bH represent, respectively, low,

medium and high fault magnitude levels. The parameters P (bL|s), P (bM |s),

and P (bH |s) are the s-mode conditioned probabilities of the fault magnitude

being low, medium, and high, respectively.

• Fault instant:

m (kf |s, ka) = Ukf ([ka −M2 + 1, ka]) , (2.7)

where ka is the alarm instant and the parameter M2 is defined in Assumption 2.2.

• Fault mode index:

m (s) = Ks (P (1), P (2), ..., P (h)) , s ∈ I, (2.8)

where h is the number of fault modes and P (i), i ∈ I, is the prior probability of

the i-th mode being in effect.

The parameters of the models (2.4)-(2.8) are all assumed to be known a priori.

Now that the model of the fault-prone system has been defined as a whole, the central

thesis problem can be stated.

Problem 2.4 Consider a fault-prone system described by (2.1)-(2.2), with the fault se-

quence established by Definition 2.1 and Assumption 2.3. The Fault-Tolerant State Esti-

mation (FTSE) problem is to estimate, in a recursive filtering manner, both the system

state sequence, {xk}, and the fault sequence, {fk}. For this end, the system model, the

control input sequence, {uk}, and the output measurement sequence, {yk}, are assumed

to be available.

It is worth pointing out that the afore-defined problem is similar to the joint state and

input estimation problem for linear systems (FRIEDLAND, 1969; DAROUACH et al., 2003;

GILLIJNS; MOOR, 2007b; HSIEH, 2010). Nevertheless, none of the cited works attempted to

propose a particular form of modeling the unknown inputs in order to make the resulting
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method specially suitable to represent faults. On the contrary, the present work takes into

consideration the existence of prior knowledge about both the fault dynamics (Definition

2.1) and the values of the fault parameters (Assumption 2.3).

2.2 Some comments upon the proposed fault-prone

system model

This section is intended to provide the reader with some more insights into the pro-

posed fault-prone system model. Subsection 2.2.1 presents some fault mode examples.

Subsection 2.2.2 makes some comments on the prior statistical models defined in As-

sumption 2.3.

2.2.1 Examples of fault modes

It is worth noting that the structured fault sequence given in Definition 2.1 is a quite

general description for additive faults in the sense that it can represent a variety of fault

modes, with different time forms and acting on different locations. Table 2.1 presents

eight examples of fault mode realizations. For illustration purposes, a simple simulation-

based example is given in order to provide some insights into the effects caused by these

faults on the output measurements of a particular system.

Consider the system described by (2.1)-(2.2), with Ak = 0.7, Bk = 1, Ck = 1, Γk = 1,

Ξk = [1 0], Θk = [0 1], Qk = 0.01, and Rk = 0.01. Let the system be excited by

the open-loop control law uk = sin (0.04πk). By inspection of either Ξk or Θk, it can be

concluded that the fault vector, fk, is two-dimensional. Moreover, its first component, f1,k,

represents actuator faults, whereas its second component, f2,k, represents sensor faults.

Computational simulations were carried out by using the afore-defined model and by

considering the fault mode realizations of Table 2.1. The resulting output measurements

are depicted in Figures 2.1 and 2.2, each of which has four graphics. In its turn, each
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TABLE 2.1 – Examples of fault mode realizations.

Description s kf bf ej(s) ϑ(s)(k − kf )
Impulsive actuator fault 1 50 3.0 e1 δk−kf
Stepwise actuator fault 2 50 1.0 e1 1k−kf
Ramp-type actuator fault 3 50 0.05 e1 (k − kf )1k−kf
Sinusoidal actuator fault 4 50 1.0 e1 sin[0.2π(k − kf )]1k−kf
Impulsive sensor fault 5 50 3.0 e2 δk−kf
Stepwise sensor fault 6 50 1.0 e2 1k−kf
Ramp-type sensor fault 7 50 0.05 e2 (k − kf )1k−kf
Sinusoidal sensor fault 8 50 1.0 e2 sin[0.2π(k − kf )]1k−kf

graphic contains three curves representing: 1) the fault sequence, 2) the output measure-

ments of the faulty system, and 3) the output measurements of the fault-free system.

Figure 2.1 shows the effects of the actuator faults (s = 1, 2, 3, 4) on the system output

measurements, whereas Figure 2.2 presents the effects of the sensor faults (s = 5, 6, 7, 8).

As expected, in all the cases, at the outset of the faults, the output measurements start

diverging from the values that they would assume in fault-free conditions. Such divergence

depends on the severity of the fault. Owing to the dynamics of the system, the effects of

the actuator faults are memorized in all the output samples after the occurrence. On the

other hand, the sensor fault effects just appear as instantaneous shifts on the output. In

the latter case, one could reason that the effects of the faults on the output measurements

can be suppressed (or reduced) by simply subtracting an estimate of them from the

samples.

Note that, as established by Problem 2.4, it is necessary to process faulty output

measurements such as those shown in Figures 2.1 and 2.2 in order to carry out both input

and state estimation.

2.2.2 The prior information on the fault parameters

Assumption 2.3 has defined that the fault parameters bf , kf , and s are realizations

of specific RVs with known probability distributions. The PDFs/PMFs given by equa-
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FIGURE 2.1 – Effects of the actuator faults (s = 1, 2, 3, 4) on the system output mea-
surements.

tions (2.4)-(2.8) could be viewed as compact representations of the prior knowledge about

the fault parameters. In practice, such statistical models might be obtained by prop-

erly processing a large amount of historical experimental data. This is an identification

problem (GOODWIN; PAYNE, 1977), with which the present thesis is not concerned. It is

rather provided some comments on the meaning of the probabilistic models established

in Assumption 2.3.

• Fault magnitude:

Three alternative probability distributions have been considered for describing

the RV that underlies the fault magnitude parameter. The first one is the Gaussian

distribution, which has been taken into account since it is a widely used model of

random phenomena in physical systems. Moreover, as will be verified in Chapter 4,

such distribution yields, in general, simpler mathematical derivations.
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FIGURE 2.2 – Effects of the sensor faults (s = 5, 6, 7, 8) on the system output measure-
ments.

The second type of distribution is the gamma. It is argued that this is an

interesting model owing to two factors. Figure 2.3 shows three gamma PDFs with

shape parameter α = 2. First, since this is a positive RV, one can use it to account

for prior knowledge about the signal of the fault magnitude. Second, by using the

gamma distribution, one means that faults with both very small and very large

magnitudes rarely occur (see Figure 2.3). The very small faults can rather be dealt

with the noise models, {wk} and {vk}. On the other hand, very large faults probably

might cause a complete system breakdown, and in this case one is no more interested

in state and fault estimation.

The third type of fault magnitude RV is a discrete one that may assume three

alternative values: low, medium, and high. This model has been considered since, in

most practical situations, only an approximation of the severity of the fault would

be required. For such situations, it is argued that the proposed discrete model is
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FIGURE 2.3 – Some gamma PDFs with shape parameter α = 2.

a plausible one. For example, in the aeronautical industry, it is quite common to

have green-yellow-red indications on the pilot’s instrumentation. Moreover, as will

be verified in Chapter 4, this is a very simple model, with which it is easier to derive

optimal decision rules and fault parameter estimators.

• Fault instant:

Only one model has been adopted for the RV underlying the fault instant: a

discrete uniform distribution. Its discrete-time characteristic is forthwith justified

by the focus of the thesis on discrete-time systems. On the other hand, its uniformity

corresponds to the assumption that there exists no additional information about this

parameter besides that given by Assumption 2.2. Nevertheless, it is conjectured that

more sophisticated discrete distributions (other than the uniform one) could have

been adopted. An example could be a sampled and truncated exponential function

that increases along the time interval [ka −M2 + 1, ka]. See Figure 2.4. Note that

by this model one means that the onset of the fault has a larger probability of being

near the alarm event.

• Fault mode index:

The most general form of discrete distributions has been adopted for the RV

underlying the fault mode index. Once again, it is argued that experiments might

be conducted in order to obtain the number of fault modes, h, as well as the fault
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FIGURE 2.4 – A truncated exponential PMF for characterizing the prior knowledge about
the fault instant.

mode probabilities, P (1), P (2), ..., P (h). However, without loss of generality, in most

of the examples given throughout the thesis, such distribution are particularized to

a uniform one, i.e., P (1) = P (2) = ... = P (h) = 1/h.

2.3 Summary

This chapter defined the central problem of the present thesis. It is a joint state and

fault estimation problem for systems subject to additive faults. Its originality resides on

the manner by which the fault was described, namely, as a realization of a structured

random sequence parameterized by three RVs representing the prior knowledge about the

fault magnitude, the fault instant, and the fault mode index.



3 Theoretical Background

This chapter is devoted to the review of some mathematical tools concerning the

statistical signal processing theory, on the basis of which the main problem of the thesis

will be approached. The material presented herein has mostly been collected from (KAY,

1998a), (KAY, 1998b), (SCHARF, 1991), and (ANDERSON; MOORE, 1979). The text is

organized as follows. Section 3.1 reviews the Maximum a Posteriori (MAP) criterion for

estimating an unknown random parameter from a noisy data set. Section 3.2 reviews the

Kalman filter (KF) as well as some of its properties that will be invoked in the remaining

chapters. Finally, Section 3.3 reviews the detection problem formulated as a multiple

composite hypothesis testing.

3.1 Parameter estimation

The present section is concerned with the problem of estimating the parameters of

a measurable signal, yk ∈ Rny , k = 1, 2, ..., N , which can be described by the following

algebraic model:

yk = ψk (λ) + nk, k = 1, 2, ..., N, (3.1)

where ψk : Rnλ 7→ Rny is a known map, and nk ∈ Rny is a zero-mean Gaussian random

vector (RV) with known covariance Rk. Moreover, the sequence {nk} is assumed to

be white. The vector λ ∈ Rnλ consists of the parameter vector, which is an unknown

realization of the RV characterized by the prior PDF p(λ).

The problem at hand is to estimate the parameter vector λ by using the prior informa-
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tion p(λ) and the measurement information contained in the data set D , {y1,y2, ...,yN}.

The framework so established is known as the Bayesian approach to parameter estimation

(KAY, 1998b). In general, any point estimation technique based on the Bayesian approach

stems from the posterior PDF of λ, given the data set D, p(λ|D). By using the Bayes

rule, such PDF can be written as

p(λ|D) =
p(D|λ)p(λ)

p(D)
, (3.2)

where p(D) is the marginal PDF of the data set, and p(D|λ) is the likelihood function,

which can be obtained immediately from model (3.1).

In order to determine a point estimate of λ from the posterior PDF p(λ|D), a criterion

needs to be chosen. The most usual criteria are the mean, the mode, and the median of

p(λ|D) (KAY, 1998b; SCHARF, 1991). In this work, the mode criterion is adopted. The

resulting estimate is known as the Maximum a Posteriori (MAP) estimate and, in general,

is given by

λ̂MAP = arg
{

max
λ

p(λ|D)
}
. (3.3)

In spite of its conceptual simplicity, the above MAP estimator can rarely be charac-

terized in closed form and, therefore, some numerical approximation is usually required.

Additionally, difficulties can often be found when trying to derive analytical expressions

for the mean and the covariance of such an estimator. In this case, in order to evaluate

its performance, a common practice is to rely on Monte Carlo simulations (KAY, 1998b).

3.2 State estimation

Consider the system described by the following linear Gaussian model:

xk+1 = Akxk + Bkuk + Γkwk + Ξkfk, (3.4)
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yk = Ckxk + vk + Θkfk, (3.5)

where xk ∈ Rnx is the state vector, yk ∈ Rny is the vector of observed outputs, uk ∈

Rnu is the vector of control inputs, fk ∈ Rnf is the fault vector, which is, by the time

being, assumed to be exactly known. The quantities Ak,Bk,Γk,Ck,Ξk, and Θk are

known deterministic matrices with appropriate dimensions. The signals {wk} and {vk}

are mutually independent, zero-mean, white, Gaussian sequences with known covariances

Qk and Rk, respectively. These sequences are also assumed to be statistically independent

of the initial state x0, which is assumed to be a Gaussian RV with known mean, x̄0, and

covariance, P0.

Considering the Minimum Mean Squared Error (MMSE) criterion, it is well-known

that the optimal estimate of xk+1 based on the measurement sequence y1:k+1 is recur-

sively given by the Kalman Filter (KF) (KALMAN, 1960). The proof of this fundamental

result can be found in several books, e.g., (ANDERSON; MOORE, 1979), (KAY, 1998b),

(JAZWINSKI, 1970), (BAR-SHALOM; LI, 1993), and (GELB, 1974). The following algorithm

summarizes the KF equations.

Algorithm 3.1 Let x̂k+1|k+1 denote the optimal MMSE estimate of xk+1 based on y1:k+1.

The k-th iteration of the Kalman filter is given by

1. Prediction phase:

x̂k+1|k = Akx̂k|k + Bkuk + Ξkfk (3.6)

Pk+1|k = AkPk|kA
′
k + ΓkQkΓ

′
k (3.7)

2. Updating phase:

Kk+1 = Pk+1|kC
′
k+1

(
Ck+1Pk+1|kC

′
k+1 + Rk+1

)−1
(3.8)
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x̂k+1|k+1 = x̂k+1|k + Kk+1

(
yk+1 −Ck+1x̂k+1|k −Θk+1fk+1

)
(3.9)

Pk+1|k+1 = (Inx −Kk+1Ck+1) Pk+1|k (3.10)

with initial conditions given by x̂0|0 = x̄0 and P0|0 = P0.

In the above recursive algorithm, the updated state estimate, which is denoted by

x̂k+1|k+1, is computed in two phases. In the prediction phase, the estimate obtained in the

previous iteration, x̂k|k, is predicted one time-step ahead by propagating it using the state

equation (3.4), giving rise to the predicted state estimate, which is denoted by x̂k+1|k. The

matrix Pk+1|k is the covariance of the state estimation error corresponding to x̂k+1|k. In

the updating phase, x̂k+1|k is updated on the basis of the measurement information, yk+1,

thus yielding the estimate x̂k+1|k+1 and the covariance of the corresponding estimation

error, Pk+1|k+1. The matrix Kk+1 is the Kalman gain.

In the next two chapters, the KF implemented with the model of the system oper-

ating under fault-free conditions will often be invoked. Hereafter, this KF will be called

fault-free KF. A formal definition is presented in the sequel.

Definition 3.2 The fault-free KF is given by Algorithm 3.1, but assuming that fk =

0,∀k ∈ Z+. Its predicted and updated estimates are denoted by x̌k+1|k and x̌k+1|k+1,

respectively.

In the presence of a fault, by simply inspecting equations (3.6) and (3.9), one can see

that the state estimate, x̂k+1|k+1, provided by Algorithm 3.1 differs from that provided by

the fault-free KF, x̌k+1|k+1. As given by the following lemma, such difference is a known

linear function of the fault sequence, {fk}. In Chapter 4, this property will be considered

in the proposal of a fault compensation mechanism.

Lemma 3.3 Let the system dynamics be described by equations (3.4)-(3.5) and suppose

that the fault sequence {fk} is known. In this context, the estimate x̂k+1|k+1 provided by
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Algorithm 3.1 and the estimate x̌k+1|k+1 provided by the fault-free KF are related to each

other by

x̂k+1|k+1 = x̌k+1|k+1 + hk+1, (3.11)

with hk+1 given recursively by

hk+1 = (Inx −Kk+1Ck+1) Akhk + ρk+1, (3.12)

where ρk+1 , (Inx −Kk+1Ck+1) Ξkfk−Kk+1Θk+1fk+1, and the initial condition is h0 = 0.

Proof. By substituting equation (3.6) into (3.9), the following recursive equation on

the updated state estimates can be obtained as

x̂k+1|k+1 = K̄k+1Akx̂k|k + K̄k+1Bkuk + Kk+1yk+1 + ρk+1, (3.13)

where K̄k , (Inx − KkCk) and ρk+1 , K̄k+1Ξkfk − Kk+1Θk+1fk+1. By considering

fk = 0,∀k ∈ Z+, the corresponding fault-free KF equation is immediately obtained:

x̌k+1|k+1 = K̄k+1Akx̌k|k + K̄k+1Bkuk + Kk+1yk+1. (3.14)

Note that both filters are initialized at instant k = 0 with x̄0 and, therefore, x̂0|0 = x̌0|0.

By using equations (3.13)-(3.14), x̂1|1 can immediately be written in terms of x̌1|1 as

x̂1|1 = x̌1|1 + ρ1. (3.15)

Similarly, the estimate x̂2|2 can be written in terms of x̌2|2 by using equations (3.13)-(3.15),

resulting

x̂2|2 = x̌2|2 + ρ2 + K̄2A1ρ1 (3.16)

Thus, by repeating the above procedure up to some arbitrary instant k > 1, the result of

Lemma 3.3 is obtained. �
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The sequence {rk}, with general term

rk , yk −Ckx̌k|k−1, (3.17)

consists of the innovation sequence of the fault-free KF. When the system is in fact

operating under fault-free conditions, such innovation sequence is a zero-mean, white,

Gaussian sequence. Moreover, the covariance of rk, which can be computed within the

KF iterations, is given by

Vk = CkPk|k−1C
′
k + Rk. (3.18)

The proofs of the aforementioned properties can be found in (ANDERSON; MOORE,

1979). In the presence of a fault, the innovation sequence of the fault-free KF remains

white and its covariance is unchanged. However, its mean is not zero any more. This

mean is referred to as the signature of the fault on the innovation of the fault-free KF.

The following lemma provides an expression for computing such a fault signature assum-

ing that the fault is known. In Chapter 4, this property will be of paramount importance

to recast the problem of identifying the fault mode index into the convenient form of a

statistical hypothesis testing.

Lemma 3.4 Let the system dynamics be described by equations (3.4)-(3.5) and sup-

pose that the fault sequence {fk} is known. In this context, the innovation sequence of

the fault-free KF, {rk}, is such that, ∀k ∈ Z+,

rk = νk + gk, (3.19)

where {νk} is a zero-mean, white, Gaussian sequence. The covariance of νk, denoted by

Vk, is given by equation (3.18). The vector gk ∈ Rny is the signature, at instant k, of the

fault sequence {fk} on the innovation sequence {rk}. This vector is given by

gk = Ckg̃k + Θkfk, (3.20)
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where g̃k can recursively be computed by

g̃k = Āk−1g̃k−1 + B̄k−1fk−1, (3.21)

with initial condition g̃0 = 0; Āk , AkK̄k, and B̄k−1 , (Ξk−1 −Ak−1Kk−1Θk−1).

Proof. By substituting the measurement equation (3.5) into equation (3.17), it follows

that

rk = Ckěk|k−1 + vk + Θkfk, (3.22)

where ěk|k−1 , xk−x̌k|k−1 is the estimation error regarding the predicted estimate provided

by the fault-free KF.

On the other hand, by substituting equation (3.9) into (3.6), a recursive expression is

obtained for x̂k|k−1. By letting fk = 0, ∀k ∈ Z+, one gets the corresponding fault-free

expression:

x̌k+1|k = Akx̌k|k−1 + Bkuk + AkKkrk. (3.23)

Now, by using equations (3.4) and (3.23), the estimation error ěk+1|k can be rewritten as

ěk+1|k = Akěk|k−1 + Γkwk + Ξkfk −AkKkrk, (3.24)

which can finally be rewritten by taking into account equation (3.22), yielding

ěk+1|k = Ākěk|k−1 + B̄kfk + ηk, (3.25)

where Āk , Ak (Inx −KkCk), B̄k−1 , (Ξk−1 −Ak−1Kk−1Θk−1), and ηk , Γkwk −

AkKkvk. Now, introduce the notation g̃k , E
{
ěk|k−1

}
. Then, by taking the expectation

of (3.25), one can obtain equation (3.21). Finally, define gk , E {rk}. Thus, by taking

the expectation of equation (3.22), the desired signature vector given by equation (3.20)

can be obtained. �
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3.3 Detection of signals corrupted by noise

This section reviews the central problem of Detection Theory: deciding from which

of the h hypothesized sources a given noisy data set has been observed. To start, let a

measurable signal, yk, k = 1, 2, ..., N , be described by one of the following h hypothetic

algebraic models:

yk = ψ
(j)
k (λ) + nk, k = 1, 2, ..., N ; j = 1, 2, ..., h, (3.26)

where ψ
(j)
k : Rnλ 7→ Rny is a known map, and nk ∈ Rny is a zero-mean Gaussian RV with

known covariance Rk. Moreover, the sequence {nk} is assumed to be white. The vector

λ ∈ Rnλ denotes the parameter vector. Under the j-th signal model, λ is assumed to

be an unknown realization of the RV characterized by the prior PDF p(λ|Hj). In this

context, the aforementioned problem can be stated as a multiple composite hypothesis

testing that, on the basis of a given optimality criterion, picks out the best among the

following hypotheses:

H1 : yk = ψ
(1)
k (λ) + nk, k = 1, 2, ..., N

H2 : yk = ψ
(2)
k (λ) + nk, k = 1, 2, ..., N

...

Hh : yk = ψ
(h)
k (λ) + nk, k = 1, 2, ..., N

(3.27)

When h = 2, the above problem reduces to a binary hypothesis testing. In this case,

the most common criterion is that established by the Neyman-Pearson (NP) Lemma,

which provides the decision rule with the maximum probability of detection for any spec-

ified probability of false alarm (SCHARF, 1991). Although the NP Lemma can be refor-

muled for the general case in which h > 2, this is rarely carried out in practice (KAY,

1998a). The present work adopts the Bayesian criterion, which is detailed in the sequel.

Let each hypothesis Hj be a random event with a known prior probability P (j). Let

Cij denote the cost of deciding Hi when Hj is true. The Bayesian risk is defined to be the
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expected cost given by

R =
h∑
i=1

h∑
j=1

CijP (Hi, Hj), (3.28)

where P (Hi, Hj) denotes the joint probability of deciding Hi and Hj being the true hy-

pothesis. By the definition of conditional probabilities [see (PAPOULIS; PILLAI, 2002), p.

28], it follows that P (Hi, Hj) = P (Hi|Hj)P (Hj), with P (Hi|Hj) being the conditional

probability of deciding Hi, given that Hj is true.

Let the data set be denoted by D , {y1,y2, ...,yN}. As shown in KAY (1998a), the

decision rule that minimizes the Bayes risk decides for the hypothesis Hi that minimizes

Ci(D) ,
h∑
j=1

CijP (Hj|D), (3.29)

where P (Hj|D) is the posterior probability of Hj being the true hypothesis, given the

measurement sequence D.

A particular form of the minimum Bayes risk criterion will be adopted in this work.

Namely, the minimum probability of error criterion, which is obtained from the general

Bayesian criterion by choosing Cii = 0 and Cij = 1 (for i 6= j). It is worth noting that,

in this case, the Bayes risk is just the probability of error, i.e., R = Pe. The resulting

decision rule is summarized in the following lemma.

Lemma 3.5 The optimal rule (in the minimum probability of error sense) that solves

the multiple hypothesis testing of equation (3.27) is given by

P (Hi|D)
Hi
> P (Hj|D) , j = 1, ..., h, j 6= i. (3.30)

Proof. By replacing Cii = 0 and Cij = 1 in (3.29), it follows that

Ci(D) =
h∑

j=1,j 6=i

P (Hj|D),
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which can be rewritten as

Ci(D) = −P (Hi|D) + 1. (3.31)

Since the last term of equation (3.31) does not depend on i, in order to minimize Ci(D),

it suffices to maximize P (Hi|D). �

For implementing the Maximum a Posteriori (MAP) decision rule given in Lemma

3.5, one needs to obtain an explicit expression for the posterior probabilities P (Hj|D),

for j = 1, ..., h. By using the Bayes rule [see (PAPOULIS; PILLAI, 2002), p. 102], such

probabilities can be expressed as

P (Hj|D) =
p(D|Hj)P (Hj)

p(D)
, (3.32)

where P (Hj) is the prior probability of hypothesis Hj being the true one. The PDF p(D)

is only a normalizing factor, which does not depend on Hj. The PDF p(D|Hj) is the

likelihood of D, given that Hj is true. This likelihood can be obtained by the integration

of the joint PDF p(D,λ|Hj) over the domain of the random parameter λ:

p(D|Hj) =

∫
p(D,λ|Hj)dλ, (3.33)

which, by using the chain rule, can be rewritten as

p(D|Hj) =

∫
p(D|λ, Hj)p(λ|Hj)dλ, (3.34)

where p(λ|Hj) is the prior PDF of the unknown parameter. From the signal model of

equation (3.26) corresponding to hypothesis Hj, it follows that

p(D|λ, Hj) =
N∏
k=1

p(yk|λ, Hj), (3.35)

with

p(yk|λ, Hj) = Nyk

(
ψ

(j)
k (λ) ,Rk

)
. (3.36)
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As pointed out in the literature on Detection Theory, there are two major difficul-

ties associated with the use of the Bayesian approach to hypothesis testing (KAY, 1998a;

SCHARF, 1991). The first one consists of the selection of a meaningful prior PDF, p(λ|Hj),

for the unknown parameter vector corresponding to each hypothesis. This is a modeling

problem that, in order to be solved, requires physical arguments as well as a large set of

historical realizations of the parameter vector. The second difficulty is that the multidi-

mensional integration given by equation (3.34) is usually not possible to be carried out in

closed form. In this case, numerical approximations are required.

Although, in this work, the Bayesian method has been elected for tackling the fault

estimation problem, it is worth briefly presenting a very popular approach used for circum-

venting the aforementioned difficulties: the Generalized Likelihood Ratio (GLR) approach.

In order to derive an explicit formula for the likelihood p(D|Hj), rather than taking the

expectation of p(D|λ, Hj) with respect to λ, the GLR approach considers the maximum

of p(D|λ, Hj) over the domain of λ. Therefore, from equations (3.30) and (3.33), the GLR

rule is given by

[maxλ p(D|λ, Hi)]P (Hi)

p(D)

Hi
>

[maxλ p(D|λ, Hj)]P (Hj)

p(D)
, (3.37)

which can be rewritten, by using the Bayes rule, as

max
λ

p(Hi|D,λ)
Hi
> max

λ
p(Hj|D,λ). (3.38)

Moreover, by considering P (H1) = P (H2) = ... = P (Hh) = 1/h, and denoting the

value of λ that maximizes p(D|λ, Hj) by λ̂j, equation (3.38) can be rewritten as

p(D|λ̂i, Hi)
Hi
> p(D|λ̂j, Hj). (3.39)

It is well-known that λ̂j is just the Maximum Likelihood (ML) estimate of λ, assuming

that Hj is the true hypothesis (KAY, 1998a). In other words, in order to yield an explicit

decision rule, the GLR method considers an estimate of the parameter vector in place of
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its unknown true value.

After deriving an explicit form of a decision rule, it is desirable to obtain an analytical

expression for the corresponding probability of error Pe. Such expression would be useful

for analyzing the performance of the rule. However, in most applications, this is a very

hard problem. It is worth mentioning a simple application in which Pe can be explicitly

determined. It consists of the communication of multiple orthogonal symbols [see (KAY,

1998a), p. 119]. In this case, the hypothesized signals ψ
(j)
k , j = 1, ..., h are exactly known

(i.e., they do not depend on unknown parameters) and, moreover, they are mutually

orthogonal, i.e., (
ψ

(i)
k

)′
ψ

(j)
k = 0, j = 1, ..., h; j 6= i. (3.40)

As will be discussed in the next chapter, such simplifying conditions cannot be extended

to the fault estimation problem with which the present thesis is concerned. Therefore,

Monte Carlo simulations will be adopted for evaluating the performance of the proposed

decision rules.



4 Fault-Tolerant Two-Stage Filters

The present chapter proposes a two-stage filtering structure to tackle the Fault-Tolerant

State Estimation (FTSE) problem defined in Chapter 2. This method is called Fault-

Tolerant Two-Stage (FTTS) filtering. The three alternative statistical models established

in Assumption 2.3 for representing the prior knowledge about the fault magnitude are con-

sidered separately. Therefore, three variants of Fault-Tolerant Two-Stage (FTTS) filters

are derived. The function of Stage 1 is to estimate the fault by statistically processing the

innovation sequence of a fault-free Kalman filter (KF). This stage relies on the Bayesian

approach for the detection of signals in noise (see Section 3.3). The role of Stage 2 is

to estimate the system states by correcting the fault-free KF on the basis of the fault

estimate provided by Stage 1. The present chapter is organized in the following manner.

Section 4.1 defines the structure of the FTTS filters. Section 4.2 details the first stage

of the filters, while Section 4.3 elaborates on their second stage. Section 4.4 illustrates

the methods by applying them to a simulated rotational DC servomechanism. Section

4.5 concerns the performance analysis of the filters. Finally, Section 4.6 summarizes the

essential points of the chapter.

4.1 The structure of the filters

For the purpose of providing easily realizable solutions to Problem 2.4, consider the

two-stage filtering structure defined below.

Definition 4.1 The FTTS filters are considered to have a recursive structure composed
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of the following two stages:

• STAGE 1: Fault estimation. Its function is to estimate the fault parameters (s, bf ,

and kf ) by using a Bayesian statistical processing of the fault-free KF innovation

sequence.

• STAGE 2: State estimation. Its function is to estimate the system states by cor-

recting the fault-free KF by using the fault estimate provided by Stage 1.

It is worth noting that the fault estimation problem addressed in Stage 1 is similar

to the one treated in WILLSKY; JONES 1976 (see Section 1.2.2). However, here, prior

probabilistic information on the fault parameters are considered, whereas in that work,

the fault parameters are assumed to be unknown deterministic constants.

The following two sections detail both stages.

4.2 Stage 1: Fault estimation

To estimate a fault sequence such as those established in Definition 2.1, it suffices to

estimate the fault parameters: s (fault mode index), kf (fault instant), and bf (fault mag-

nitude). Here, the fault estimation is carried out on the basis of a finite set of innovation

vectors provided by the fault-free KF, which has been defined in Section 3.2.

Definition 4.2 The data set used for estimating the fault parameters is given by Dka ,

rka:ka+M1−1, where M1 ∈ Z+ − {0} is the design parameter specifying the length of the

data set, ka is the alarm instant, and rk is the innovation vector of the fault-free KF at

instant k.

The fault estimation subproblem is divided into two parts. The first part aims at

estimating the fault mode index, s, by a multiple composite hypothesis test. The second

part is responsible for the estimation of the fault instant, kf , and the fault magnitude, bf ,

by solving a parameter estimation problem. This is formalized below.
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Problem 4.3 Consider the system described by equations (2.1)-(2.2), with the additive

fault, fk = bfej(s)ϑ
(s) (k − kf ), given in Definition 2.1. Moreover, let the fault parameters

s, kf , and bf be realizations of the RVs defined in Assumption 2.3. In this context, given

the data set Dka ,

a . the estimate of the fault mode index, ŝ, is obtained by solving the following

multiple composite hypothesis testing:

Hi : Dka = νka:ka+M1−1 + bfg
(i)
ka:ka+M1−1 (kf ) , i = 1, 2, ..., h. (4.1)

where νka:ka+M1−1 is an uncorrelated sequence of Gaussian distributed RVs belonging

to Rny , with zero means and covariances, Vka:ka+M1−1, computed by the fault-free

KF, equation (3.18). The sequence bfg
(i)
ka:ka+M1−1 (kf ) is the signature of the i-th

fault mode on the innovation sequence of the fault-free KF along the discrete time

interval [ka, ka +M1 − 1].

b . and both the estimate of the fault instant, k̂f , and the estimate of the fault

magnitude, b̂f , are obtained by assuming that the true fault mode is ŝ and by using

the Maximum a Posteriori (MAP) criterion.

To start dealing with Problem 4.3, the following lemma provides a general-form so-

lution to the hypothesis test expressed in equation (4.1). This solution is based on the

Minimum Probability of Error (MPE) criterion, which was reviewed in Section 3.3.

Lemma 4.4 Let ŝ and j 6= ŝ belong to the set of fault mode indices I = {1, 2, ..., h}. The

optimal MPE solution, ŝ, to the multiple composite hypothesis test (4.1) is given by the

following MAP decision rule:

P (ŝ|Dka)
Hŝ
> P (j|Dka) , ∀j 6= ŝ (4.2)

where, ∀i ∈ I, P (i|Dka) is the posterior probability of i being the true fault mode index.
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Proof. This is just the result given by Lemma 3.5, but using the notation of Problem 4.3.

�

By means of the Bayes’ rule, the decision rule given by equation (4.2) can immediately

be rewritten as

p (Dka|ŝ)P (ŝ)
Hŝ
> p (Dka |j)P (j),∀j 6= ŝ, (4.3)

where, ∀i ∈ I, P (i) is the prior probability of i being the true fault mode index and

p (Dka|i) is the likelihood of Dka assuming that i is the true fault mode index. To obtain

an equivalent but explicit form of the decision rule given by equation (4.3), it is necessary

to specify the likelihood function p (Dka|i), ∀i ∈ I.

The following two lemmas are useful to simplify the forthcoming presentations.

Lemma 4.5 Let s, kf , and bf be the true fault parameters. In this case, the data

set Dka is a sample of the PDF

p (Dka |s, kf , bf ) = a1 exp

{
−1

2
b2
fξ

(s) (kf ) + bfζ
(s) (kf )

}
, (4.4)

where

a1 ,
1

(2π)
M1ny

2

(
ka+M1−1∏
k=ka

det(Vk)
− 1

2

)
exp

{
−1

2

ka+M1−1∑
n=ka

r′nV
−1
n rn

}
,

ξ(s) (kf ) ,
ka+M1−1∑
k=ka

(
g

(s)
k (kf )

)′
V−1
k g

(s)
k (kf ),

ζ(s) (kf ) ,
ka+M1−1∑
k=ka

(
g

(s)
k (kf )

)′
V−1
k rk.

Proof. From Section 3.2, it is known that rk ∼ Nrk

(
bfg

(s)
k (kf ) ,Vk

)
, or equivalently,

p (rk|s, bf , kf ) =
1√

(2π)ny det(Vk)
exp

{
−1

2

(
rk − bfg(s)

k (kf )
)′
V−1
k

(
rk − bfg(s)

k (kf )
)}

.

(4.5)

Furthermore, owing to the uncorrelatedness of the innovation sequence, {rk}, the joint
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PDF of the RVs belonging to Dka is given by the following product:

p (Dka|s, kf , bf ) =

ka+M1−1∏
k=ka

p (rk|s, kf , bf ) . (4.6)

Therefore, equation (4.4) can be obtained by substituting equation (4.5) into (4.6) and

manipulating the resulting expression accordingly. �

Lemma 4.6 Let Bf and Kf denote the supports of bf and kf , respectively. The likelihood

of the data set, Dka , assuming that i is the true fault mode index, is given by the following

two alternative expressions:

• If the fault magnitude RV is continuous (Gaussian or gamma),

p (Dka|i) =

∫
Bf

∑
kf∈Kf

p (Dka|i, kf , bf ) p (bf |i)m (kf |i, ka) dbf (4.7)

• If the fault magnitude RV is discrete,

p (Dka |i) =
∑
bf∈Bf

∑
kf∈Kf

p (Dka |i, kf , bf )m (bf |i)m (kf |i, ka) (4.8)

where p (Dka|i, kf , bf ) is given by the previous lemma, and p (bf |i), m (bf |i), andm (kf |i, ka)

are the prior PDF/PMFs of the fault magnitude and fault instant (see Assumption 2.3).

Proof. Firstly, consider the continuous fault magnitude case. The likelihood of the data

set is obtained by marginalizing p (Dka , bf , kf |i) over bf and kf , i.e.,

p (Dka|i) =

∫
Bf

∑
kf∈Kf

p (Dka , bf , kf |i) dbf . (4.9)

By means of the chain rule, the summand in equation (4.9) can be rewritten as

p (Dka , bf , kf |i) = p (Dka|i, kf , bf ) p (bf , kf |i) .

By using the assumption of statistical independence between the RVs underlying the fault
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magnitude and the fault instant (see Assumption 2.3), the above equation becomes

p (Dka , bf , kf |i) = p (Dka|i, bf , kf ) p (bf |i)m (kf |i, ka) (4.10)

Therefore, by combining equations (4.10) and (4.9), equation (4.7) can be obtained.

Now, for the case of discrete fault magnitudes, corresponding to equation (4.8), replace

p (bf |i) by m (bf |i) in equation (4.10) and, instead of the integration carried out in equation

(4.9), take the summation over Bf . �

Note that the first part of Problem 4.3 can be solved independently of the second one.

This is made possible by the marginalization of the joint PDF p (Dka , bf , kf |i) over bf and

kf , which was carried out in Lemma 4.6. This characteristic is not found in the GLR

method, in which the fault instant and the fault magnitude need to be estimated for each

fault mode hypothesis (WILLSKY; JONES, 1976) and, therefore, the two parts have to be

solved in an intertwined form. In the following three subsections, the prior statistics of

the fault parameters are explicitly taken into account. Each subsection looks upon one of

the three alternative fault magnitude models defined in Assumption 2.3.

4.2.1 Case 1: Fault magnitude with Gaussian distribution

Let the fault parameters, s, kf , and bf be drawn from the corresponding RVs defined

in Assumption 2.3. Regarding to the fault magnitude, bf , for which three alternative

cases have been considered, let it be drawn from the Gaussian RV with the PDF given

by equation (2.4). In this context, the present subsection provides an explicit solution to

Problem 4.3. Particularly, Theorem 4.7 is concerned with the first part of the problem,

while Theorem 4.8 refers to its second part.

Theorem 4.7 Let i ∈ I denote an arbitrary fault mode index. If bf is a sample of

the PDF p (bf |i) = Nbf (µi, σ
2
i ), with support Bf = R, and kf is a sample of the PMF

m (kf |i, ka) = Ukf ([ka, ka −M2 + 1]), with support Kf = [ka, ka −M2 + 1], then, by using
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the MPE criterion, the solution to part a of Problem 4.3 is given by

Tŝ(Dka)
Hŝ
> Tj(Dka),∀j 6= ŝ, (4.11)

where, for ∀i,

Ti(Dka) ,
P (i) exp {−µ2

i /2σ
2
i }

σi

∑
l∈Kf

1√
σ−2
i + ξ(i) (l)

exp

{(
µiσ

−2
i + ζ(i) (l)

)2

2
(
σ−2
i + ξ(i) (l)

) } , (4.12)

with ζ(i)(l) and ξ(i)(l) as defined in Lemma 4.5.

Proof. Note that, in the present case, the appropriate likelihood function is given by

equation (4.7). For clarity, denote its summand by q (bf , kf ), which can be rewritten as

q (bf , kf ) = q1q2 (bf , kf ), with q1 , a1 exp
{
− µ2i

2σ2
i

}
/
(
σiM2

√
2π
)

and

q2 (bf , kf ) ,
∑
l∈Kf

δkf−l exp

{
−1

2
b2
f

(
ξ(i) (kf ) + σ−2

i

)
+ bf

(
ζ(i) (kf ) + µiσ

−2
i

)}
.

Once q1 does not depend on bf and kf , equation (4.7) can be rearranged, yielding

p (Dka|i) = q1

∑
l∈Kf

∫
Bf

∑
kf∈Kf

δkf−l exp

{
−1

2
b2
f

(
ξ(i) (kf ) +

1

σ2
i

)
+ bf

(
ζ(i) (kf ) +

µi
σ2
i

)}
dbf .

By taking the sum over kf and completing the square of the resulting exponent, one gets

p (Dka|i) = q1

∑
l∈Kf

∫
Bf

exp

{
−1

2

(
ξ(i) (l) + σ−2

i

)(
bf −

ζ(i) (l) + µiσ
−2
i

ξ(i) (l) + σ−2
i

)2
}
dbf ...

× exp

{(
ζ(i) (l) + µiσ

−2
i

)2

2
(
ξ(i) (l) + σ−2

i

) } .
Note that the integrand of the above expression is proportional to a Gaussian PDF. Since

the integral of any PDF over its entire support is unitary, one can immediately compute
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the integral over bf , obtaining

p (Dka |i) = q1

∑
l∈Kf

√
2π

ξ(i) (l) + σ−2
i

exp

{(
ζ(i) (l) + µiσ

−2
i

)2

2
(
ξ(i) (l) + σ−2

i

) } . (4.13)

Therefore, by substituting equation (4.13) into (4.3) and making some algebraic manipu-

lations, the decision rule of equation (4.11) can be obtained. �

Theorem 4.8 Let ŝ be the estimate of the fault mode index provided by Theorem 4.7. If

bf is a sample of the PDF p (bf |ŝ) = Nbf (µŝ, σ
2
ŝ), with support Bf = R, and kf is a sample

of the PMF m (kf |ŝ, ka) = Ukf ([ka, ka −M2 + 1]), with support Kf = [ka, ka −M2 + 1],

then the solution to part b of Problem 4.3 is given by

k̂f = arg

{
min
kf∈Kf

z(kf )

}
, (4.14)

b̂f = b̄(k̂f ), (4.15)

where

z(kf ) , −
(
ζ(ŝ) (kf ) + µŝσ

−2
ŝ

)2

ξ(ŝ) (kf ) + σ−2
ŝ

, (4.16)

b̄(kf ) ,
ζ(ŝ) (kf ) + µŝσ

−2
ŝ

ξ(ŝ) (kf ) + σ−2
ŝ

, (4.17)

with ζ(ŝ)(kf ) and ξ(ŝ)(kf ) as defined in Lemma 4.5.

Proof. In general, by the MAP criterion, the optimal estimates of kf and bf are given

by {
k̂f , b̂f

}
, arg

{
max

kf∈Kf ,bf∈Bf
J(bf , kf )

}
, (4.18)
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where J(bf , kf ) is the joint posterior PDF of the RVs underlying kf and bf . It can be

rewritten, by means of the Bayes’ rule, as

J(bf , kf ) =
p (Dka|ŝ, kf , bf ) p (bf |ŝ)m (kf |ŝ, ka)

p (Dka|ŝ)
.

Note that the denominator of the right-hand side of the above expression does not depend

on bf and kf , and, moreover, m (kf |ŝ, ka) is a non-informative PMF. Therefore, one can

use the reduced cost function J̄(bf , kf ) = p (Dka|ŝ, kf , bf ) p (bf |ŝ). From both Lemma 4.5

and the explicit form of p (bf |ŝ) = Nbf (µŝ, σ
2
ŝ), J̄ can be rewritten as

J̄(bf , kf ) =

[
a1√
2π

exp

{
− µ2

ŝ

2σ2
ŝ

}]
exp

{
−1

2
b2
f

(
ξ(ŝ) (kf ) + σ−2

ŝ

)
+ bf

(
ζ(ŝ) (kf ) + µŝσ

−2
ŝ

)}
.

By eliminating the factor in brackets, which does not depend on bf and kf , and by apply-

ing the natural logarithmic function, the optimization given by (4.18) can be seen to be

equivalent to {
k̂f , b̂f

}
= arg

{
min

kf∈Kf ,bf∈Bf
J̌(bf , kf )

}
,

where J̌(bf , kf ) = b2
f

(
ξ(ŝ) (kf ) + σ−2

ŝ

)
− 2bf

(
ζ(ŝ) (kf ) + µŝσ

−2
ŝ

)
.

Finally, note that for each kf ∈ Kf , J̌ is quadratic in bf and ∂2J̌/∂b2
f = 2

(
ξ(ŝ)(kf ) + σ−2

ŝ

)
>

0,∀bf ∈ Bf . Then, for each value of kf , the minimum of J̌ is attained at bf = b̄(kf ),

which is given by ∂J̌/∂bf (bf , kf )|bf=b̄(kf ) = 0. Hence, b̄(kf ) is given by equation (4.17).

Now, by defining z(kf ) , J̌(b̄(kf ), kf ), one can see that the desired estimate of the fault

instant, k̂f , is the value of kf that minimizes z(kf ). On the other hand, the estimate of

bf is obtained by substituting kf by k̂f in b̄(kf ). �

On the basis of the above two theorems, the following algorithm summarizes Stage 1

of the FTTS filter that is suitable for Gaussian fault magnitudes.

Algorithm 4.9 Stage 1 of the FTTS filter for Gaussian fault magnitudes:

1. Estimation of s:

• for ∀i ∈ I, compute Ti(Dka) using equation (4.12);



CHAPTER 4. FAULT-TOLERANT TWO-STAGE FILTERS 61

• ŝ = arg {maxi∈I Ti(Dka)};

2. Estimation of kf and bf :

• k̂f = arg
{

minkf∈Kf z(kf )
}
, where z(.) is given by equation (4.16);

• b̂f = b̄(k̂f ), where b̄(.) is given by equation (4.17).

4.2.2 Case 2: Fault magnitude with gamma distribution

Similar to the previous subsection, let the fault parameters s, kf , and bf be drawn

from the corresponding RVs defined in Assumption 2.3. But now, assume that the fault

magnitude is drawn from the gamma RV with PDF given by equation (2.5). Particularly,

assume that the shape parameter of this PDF is fixed at αs = 2. Therefore, the scale

parameter βs is the only degree of freedom available to model the prior knowledge about

the fault magnitude 1. In this context, the following two theorems provide a quasi-explicit

solution to Problem 4.3.

Theorem 4.10 Let i ∈ I denote an arbitrary fault mode index. If bf is a sample of

the PDF p (bf |i) = Gbf (2, βi), with support Bf = R+, and kf is a sample of the PMF

m (kf |s, ka) = Ukf ([ka, ka −M2 + 1]), with support Kf = [ka, ka −M2 + 1], then, by using

the MPE criterion, the solution to part a of Problem 4.3 is given by

Tŝ(Dka)
Hŝ
> Tj(Dka),∀j 6= ŝ, (4.19)

where, ∀i,

Ti(Dka) ,
P (i)

β2
i

∑
l∈Kf

exp


(
ζ(i)(l)− 1

βi

)2

2ξ(i)(l)

 (c1 + c2 + c3) , (4.20)

1Note that the gamma PDF with α = 2 and an arbitrary β is equivalent to the Erlang-2 PDF with
rate parameter λ = 1/2β [see (PAPOULIS; PILLAI, 2002), p.87].
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with c1 , Ii(l)
ζ(i)(l)− 1

βi

ξ(i)(l)
, c2 , 1

ξ(i)(l)
exp

{(
ζ(i)(l)− 1

βi

)2

2ξ(i)(l)

}
, c3 ,

ζ(i)(l)− 1
βi

2ξ(i)(l)

√
2π

ξ(i)(l)
,

Ii(l) ,
∫ 0

−
ζ(i)(l)− 1

βi

ξ(i)(l)

exp

{
−1

2
ξ(i)(l)b2

}
db, (4.21)

and both ζ(i)(l) and ξ(i)(l) are as defined in Lemma 4.5.

Proof. Note that, in the present case, the appropriate likelihood function is again given

by equation (4.7). For clarity, denote its summand by q (bf , kf ), which can be rewritten

as q (bf , kf ) = q1q2 (bf , kf ), with q1 , a1/(β
2
iM2Γ(2)), and

q2 (bf , kf ) , bf
∑
l∈Kf

δkf−l exp

{
−1

2
b2
fξ

(i) (kf ) + bf

(
ζ(i) (kf )−

1

βi

)}
.

Once q1 does not depend on bf and kf , equation (4.7) can be rearranged, yielding

p (Dka|i) = q1

∑
l∈Kf

∫
Bf

bf
∑
kf∈Kf

δkf−l exp

{
−1

2
b2
fξ

(i) (kf ) + bf

(
ζ(i) (kf )−

1

βi

)}
dbf .

By taking the sum over kf and completing the square of the resulting exponent, one gets

p (Dka|i) = q1

∑
l∈Kf

∫ ∞
0

bf exp

−ξ(i) (l)

2

(
bf −

ζ(i) (l)− 1
βi

ξ(i) (l)

)2
 dbf exp


(
ζ(i) (l)− 1

βi

)2

2ξ(i) (l)

 .

By considering the change of variable given by b̃ , bf−(ζ(i)(l)−β−1
i )/ξ(i)(l), and carrying

out the integration over Bf , the above expression becomes

p (Dka|i) = q1

∑
l∈Kf

exp


(
ζ(i) (l)− 1

βi

)2

2ξ(i) (l)

 (c1 + c2 + c3) , (4.22)

where c1, c2, and c3 are defined after equation (4.20). Finally, by substituting equation

(4.22) into (4.3) and making some algebraic manipulations, the decision rule of equation

(4.19) can be obtained. �

Since the integral Ii(l) defined in (4.21) does not have an exact analytical solution,
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the decision rule given by the above theorem is rather a quasi-closed solution to part a of

Problem 4.3. In this case, for the purpose of obtaining a corresponding closed solution, a

numerical approximation is needed to compute Ii(l). The following lemma suggests such

an approximation.

Lemma 4.11 The approximation of Ii(l) that is obtained by means of expanding its

integrand into a Maclaurin series of degree n is given by the following finite alternating

series:

Ini (l) =
n∑
q=0

(−1)qξ(i)(l)−q−1
(
ζ(i)(l)− β−1

i

)2q+1

2q(q)!(2q + 1)
. (4.23)

Proof. The Maclaurin series expansion of the integrand of Ii(l) in equation (4.21) corre-

sponds to the converging series exp {ν} =
∑∞

q=0 ν
q/q!, where ν , −1

2
ξ(i)(l)b2 (ATKINSON,

1989). Therefore, by neglecting the terms with the order greater than n and analytically

integrating the resulting expression, one gets Ini (l). �

Thus, by using Ini (l) in place of Ii(l) to compute the test statistics expressed by equa-

tion (4.20), the ensuing rule (4.19) turns out to be explicit.

Theorem 4.12 Let ŝ be the estimate of the fault mode index provided by Theorem 4.10. If

bf is a sample of the PDF p (bf |ŝ) = Gbf (2, βŝ), with support Bf = R+, and kf is a sample

of the PMF m (kf |ŝ, ka) = Ukf ([ka, ka −M2 + 1]), with support Kf = [ka, ka −M2 + 1],

then the solution to part b of Problem 4.3 is given by

k̂f = arg

{
max
kf∈Kf

z (kf )

}
, (4.24)

b̂f = b̄
(
k̂f

)
, (4.25)

where

z (kf ) , ln b̄(kf )−
1

2
ξ(ŝ)(kf )b̄

2(kf ) +

(
ζ(ŝ)(kf )−

1

βŝ

)
b̄(kf ), (4.26)
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b̄(kf ) ,

(
ζ(ŝ)(kf )− 1

βŝ

)
+

√(
ζ(ŝ)(kf )− 1

βŝ

)2

+ 4ξ(ŝ)(kf )

2ξ(ŝ)(kf )
, (4.27)

with ζ(ŝ)(kf ) and ξ(ŝ)(kf ) as defined in Lemma 4.5.

Proof. In general, by the MAP criterion, the optimal estimates of kf and bf are given

by {
k̂f , b̂f

}
, arg

{
max

kf∈Kf ,bf∈Bf
J(bf , kf )

}
, (4.28)

where J(bf , kf ) is the joint posterior PDF of the RVs underlying kf and bf . It can be

rewritten, by means of the Bayes’ rule, as

J(bf , kf ) =
p (Dka|ŝ, kf , bf ) p (bf |ŝ)m (kf |ŝ, ka)

p (Dka|ŝ)
.

Note that the denominator of the right-hand side of the above expression does not depend

on bf and kf , and, moreover, m (kf |ŝ, ka) is a non-informative PMF. Therefore, one can

use the reduced cost function J̄(bf , kf ) = p (Dka|ŝ, kf , bf ) p (bf |ŝ). From both Lemma 4.5

and the explicit form of p (bf |ŝ) = Gbf (2, βŝ), J̄ can be written as

J̄(bf , kf ) =

[
a1

Γ(2)β2
ŝ

]
bf exp

{
−1

2
b2
fξ

(ŝ) (kf ) + bf

(
ζ(ŝ) (kf )−

1

βŝ

)}
.

By eliminating the factor in brackets, which does not depend on bf and kf , and by applying

the natural logarithmic function, the optimization in (4.28) can be seen to be equivalent

to {
k̂f , b̂f

}
= arg

{
max

kf∈Kf ,bf∈Bf
J̌(bf , kf )

}
,

where J̌(bf , kf ) = ln bf − 1
2
ξ(ŝ)(kf )b

2
f +

(
ζ(ŝ)(kf )− 1

βŝ

)
bf .

Note that for each kf ∈ Kf , J̌ is differentiable with respect to bf in Bf−{0}. Additionally,

when bf → 0+, J̌ → −∞. Then, for each kf , the maximum of J̌ occurs at some of the

critical points given by ∂J̌/∂bf (bf , kf )|bf=b∗(kf ) = 0. Explicitly, these critical points are
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the following two:

b∗1,2(kf ) =

(
ζ(ŝ)(kf )− 1

βŝ

)
±
√(

ζ(ŝ)(kf )− 1
βŝ

)2

+ 4ξ(ŝ)(kf )

2ξ(ŝ)(kf )
.

Since ξ(ŝ)(kf ) > 0,∀kf , the value of the square root in the above expression is always

greater than
∣∣ζ(ŝ)(kf )− β−1

ŝ

∣∣. Thus, there exists only one critical point in Bf , i.e.,

b̄(kf ) =

(
ζ(ŝ)(kf )− 1

βŝ

)
+

√(
ζ(ŝ)(kf )− 1

βŝ

)2

+ 4ξ(ŝ)(kf )

2ξ(ŝ)(kf )
.

Finally, note that ∂2J̌/∂b2
f = −

(
b−2
f + ξ(ŝ)(kf )

)
< 0,∀bf ∈ Bf . Then, in fact, for each

value of kf , the maximum of J̌ occurs at bf = b̄(kf ). Therefore, by defining z(kf ) ,

J̌(b̄(kf ), kf ), one can see that the estimate of the fault instant, k̂f , is the value of kf that

maximizes z(kf ). On the other hand, the estimate of bf is obtained by substituting kf by

k̂f into b̄(kf ). �

On the basis of Theorem 4.10, Lemma 4.11, and Theorem 4.12, the following algo-

rithm summarizes Stage 1 of the FTTS filter that are suitable for gamma fault magnitudes.

Algorithm 4.13 Stage 1 of the FTTS filter for gamma fault magnitudes:

1. Estimation of s:

• for ∀i ∈ I, compute Ti(Dka) using equation (4.20) by approximating

Ii(l) with Ini (l), which is given by equation (4.23);

• ŝ = arg {maxi∈I Ti(Dka)};

2. Estimation of kf and bf :

• k̂f = arg
{

maxkf∈Kf z(kf )
}
, where z(.) is given by equation (4.26);

• b̂f = b̄(k̂f ), where b̄(.) is given by equation (4.27).
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4.2.3 Case 3: Fault magnitude with discrete distribution

Similar to the previous subsections, let the fault parameters s, kf , and bf be drawn

from the corresponding RVs defined in Assumption 2.3. But now, assume that the fault

magnitude is drawn from the discrete RV whose PMF is given by equation (2.6). In this

context, the following two theorems provide the explicit solution, respectively, to part a

and part b of Problem 4.3.

Theorem 4.14 Let i ∈ I denote an arbitrary fault mode index. If bf is a sample of

the PMF m (bf |i) = Kbf (P (bL|i), P (bM |i), P (bH |i)), with support Bf = {bL, bM , bH},

and kf is a sample of the PMF m (kf |i, ka) = Ukf ([ka, ka −M2 + 1]), with support

Kf = [ka, ka −M2 + 1], then, by using the MPE criterion, the solution to part a of

Problem 4.3 is given by

Tŝ(Dka)
Hŝ
> Tj(Dka),∀j 6= ŝ, (4.29)

where, for ∀i,

Ti(Dka) , P (i)
∑
l∈Kf

∑
b∈Bf

P (b|i) exp

{
−1

2
b2ξ(i) (l) + bζ(i) (l)

}
, (4.30)

with ζ(i)(l) and ξ(i)(l) as defined in Lemma 4.5.

Proof. Note that, in the present case, the likelihood of the data set is appropriately

given by equation (4.8). Denote the summand of such expression by q (bf , kf ), which can

be rewritten as q (bf , kf ) = q1q2 (bf , kf ), with q1 , a1/M2, and

q2 (bf , kf ) ,
∑
l∈Kf

∑
b∈Bf

P (b|i)δbf−bδkf−l exp

{
−1

2
b2
fξ

(i) (kf ) + bfζ
(i) (kf )

}
.

Since q1 does not depend on bf and kf , equation (4.8) can be written as

p (Dka |i) = q1

∑
bf∈Bf

∑
kf∈Kf

∑
b∈Bf

∑
l∈Kf

P (b|i)δbf−bδkf−l exp

{
−1

2
b2
fξ

(i) (kf ) + bfζ
(i) (kf )

}
.
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By taking the sum over kf , the above expression becomes

p (Dka |i) = q1

∑
bf∈Bf

∑
b∈Bf

∑
l∈Kf

P (b|i)δbf−b exp

{
−1

2
b2
fξ

(i) (l) + bfζ
(i) (l)

}
,

or equivalently,

p (Dka|i) = q1

ka∑
l=ka−M2+1

∑
b∈Bf

P (b|i)
∑
bf∈Bf

δbf−b exp

{
−1

2
b2
fξ

(i) (l) + bfζ
(i) (l)

}
.

Now, by taking the sum over bf , one gets

p (Dka|i) = q1

∑
l∈Kf

∑
b∈Bf

P (b|i) exp

{
−1

2
b2ξ(i) (l) + bζ(i) (l)

}
. (4.31)

Therefore, by substituting equation (4.31) into (4.3) and making some algebraic manipu-

lations, the decision rule given by equation (4.29) can be obtained. �

Theorem 4.15 Let ŝ be the estimate of the fault mode index provided by Theorem 4.14.

If bf is a sample of the PMF m (bf |ŝ) = Kbf (P (bL|ŝ), P (bM |ŝ), P (bH |ŝ)), with support

Bf = {bL, bM , bH}, and kf is a sample of the PMF m (kf |ŝ, ka) = Ukf ([ka, ka −M2 + 1]),

with support Kf = [ka, ka −M2 + 1], then the solution to part b of Problem 4.3 is given

by {
b̂f , k̂f

}
= arg

{
min

kf∈Kf ,bf∈Bf
J̌(bf , kf )

}
, (4.32)

where

J̌(bf , kf ) , b2
fξ

(ŝ) (kf )− 2bfζ
(ŝ) (kf )− 2 ln

∑
b∈Bf

P (b|ŝ)δbf−b

 , (4.33)

with ζ(ŝ)(kf ) and ξ(ŝ)(kf ) as defined in Lemma 4.5.

Proof. In general, by the MAP criterion, the optimal estimates of kf and bf are given

by {
k̂f , b̂f

}
, arg

{
max

kf∈Kf ,bf∈Bf
J(bf , kf )

}
, (4.34)
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where J(bf , kf ) is the joint posterior PMF of the RVs underlying kf and bf . It can be

rewritten, by means of the Bayes’ rule, as

J(bf , kf ) =
p (Dka|ŝ, bf , kf )m (bf |ŝ)m (kf |ŝ, ka)

p (Dka|ŝ)
.

Note that the denominator of the right-hand side of the above expression does not depend

on bf and kf , and that m (kf |ŝ, ka) is a non-informative PMF. Thus, one can use the

reduced function J̄(bf , kf ) = p (Dka |ŝ, kf , bf )m (bf |ŝ). From both Lemma 4.5 and the

explicit form of m (bf |ŝ), J̄ can be rewritten as

J̄(bf , kf ) = a1

∑
b∈Bf

P (b|ŝ)δbf−b exp

{
−1

2
b2
fξ

(ŝ) (kf ) + bfζ
(ŝ) (kf )

}
. (4.35)

Finally, by eliminating the factor a1, which does not depend on bf and kf , and by applying

the natural logarithmic function, the optimization in (4.34) can be seen to be equivalent

to {
k̂f , b̂f

}
= arg

{
min

kf∈Kf ,bf∈Bf
J̌(bf , kf )

}
,

where J̌(bf , kf ) = b2
fξ

(ŝ) (kf )− 2bfζ
(ŝ) (kf )− 2 ln

(∑
b∈Bf P (b|ŝ)δbf−b

)
. �

On the basis of the above two theorems, the following algorithm summarizes Stage 1

of the FTTS filter that is suitable for discrete fault magnitudes.

Algorithm 4.16 Stage 1 of the FTTS filter for discrete fault magnitudes:

1. Estimation of s:

• for ∀i ∈ I, compute Ti(Dka) using equation (4.29);

• ŝ = arg {maxi∈I Ti(Dka)};

2. Estimation of kf and bf :
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•
{
k̂f , b̂f

}
= arg

{
minkf∈Kf ,bf∈Bf J̌(bf , kf )

}
, where J̌(., .) is given by equa-

tion (4.33);

4.3 Stage 2: state estimation

The three FTTS filters have the same second stage, which carries out state estimation

by correcting the fault-free KF using the fault estimate provided by Stage 1. It is worth

recalling that from Lemma 3.3, if the fault sequence, {fk}, are exactly known, the MMSE

estimates of the system states could be computed by

x̂optk|k = x̌k|k + hk, (4.36)

where x̌k|k is the estimate provided by the fault-free KF at instant k and

hk = K̄kAk−1hk−1 + K̄kΞk−1fk−1 −KkΘk−1fk, (4.37)

with initial condition h0 = 0.

In spite of the optimality of the above state estimator, it cannot be used in practice,

since the true fault sequence is usually unknown. Nevertheless, an heuristic but imple-

mentable version of this estimator can be obtained by replacing the true fault fk by its

estimate

f̂k = b̂fej(ŝ)ϑ
(ŝ)
(
k − k̂f

)
, (4.38)

which is computed by using the estimates of the fault parameters, ŝ, k̂f , and b̂f , provided

by Stage 1.

Definition 4.17 Let the instant of correction be defined as kc , ka + M1 − 1. De-

note the filtered estimates of the FTTS filters at instant k by x̂k|k. The state estimation

stage (Stage 2) of the three FTTS filters is given by

• If k ≤ kc, then x̂k|k = x̌k|k
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• If k > kc, then x̂k|k = x̌k|k + ĥk

where ĥk is recursively given by ĥk = K̄kAk−1ĥk−1 +K̄kΞk−1f̂k−1−KkΘk−1f̂k, with initial

condition ĥk̂f−1 = 0.

Note that during the time interval k < kf , the state estimator of Definition 4.17 cor-

responds to the optimal one. However, during the time interval kf ≤ k < kc, owing to the

effects of the fault, the state estimates might present a diverging behavior. In this phase,

nothing can be done in order to improve the state estimates since the fault estimate is not

yet available. When the correction becomes effective, i.e., for k ≥ kc, an improvement of

performance is expected. The following algorithm summarizes Stage 2 of the FTTS filters.

Algorithm 4.18 The k-th iteration of Stage 2 of the FTTS filters is given by

1. State prediction:

x̌k|k−1 = Ak−1x̌k−1|k−1 + Bk−1uk−1

Pk|k−1 = Ak−1Pk−1|k−1A
′
k−1 + Γk−1Qk−1Γ

′
k−1

2. Innovation generation:

rk = yk −Ckx̌k|k−1

Vk = CkPk|k−1C
′
k + Rk

3. State update:

Kk = Pk|k−1C
′
k (Vk)

−1

x̌k|k = x̌k|k−1 + Kkrk

Pk|k = (Inx −KkCk) Pk|k−1

4. State correction:

If k < kc, then ĥk = 0

if k = kc, then for j = k̂f : k, ĥj = K̄jAj−1ĥj−1 + K̄jΞj−1f̂j−1 −KjΘj−1f̂j

if k > kc, then ĥk = K̄kAk−1ĥk−1 + K̄kΞk−1f̂k−1 −KkΘk−1f̂k

x̂k|k = x̌k|k + ĥk
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4.4 Illustrative Examples

In this section, the three FTTS filters are illustrated using a simulated permanent-

magnet DC motor coupled to a rotational inertia. Subsection 4.4.1 presents the dynamical

model of the fault-prone system, while Subsection 4.4.2 evaluates the performance of the

FTTS filters on the basis of Monte Carlo simulations.

4.4.1 System modeling

For describing the dynamics of the servomechanism, consider the physical model de-

picted in Figure 4.1. In this model, the armature of the motor is represented by a series

circuit connecting a resistance, RA, an inductance, LA, and a counter-electromotive force,

e, which is proportional to the shaft angular velocity, ω, and opposes the armature volt-

age, vA. The interaction between the main magnetic field (produced by the permanent

magnet) and the magnetic field generated by the flow of the armature current, iA, through

the circuit induces a torque, Tm. This torque drives a rotational body, whose moment of

inertia is J and is subject to a viscous linear friction with coefficient B. The system is

equipped with a potentiometer (for measuring the angular position, θ) and a tachome-

ter (for measuring the angular velocity, ω). As mentioned before, three illustrative fault

modes are considered: an impulsive error in the angular position observations (Fault 1), a

constant bias in the angular velocity observations (Fault 2), and a sinusoidal interference

in the armature voltage (Fault 3). The physical parameters of the system are shown in

Table 4.1.

TABLE 4.1 – Physical parameters of the servomechanism.

Description Symbol Value

Armature resistance RA 2 Ω
Armature inductance LA 0.05 H
Torque constant kT 0.1 Nm/A
EMF constant kω 0.1 V/(rad/s)
Friction B 0.005 Nm/(rad/s)
Moment of inertia J 0.02 kgm2
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FIGURE 4.1 – Physical model of the servomechanism.

Define a state vector x = [ x1 x2 x3 ]′, with x1 , θ, x2 , ω, and x3 , iA, and a

control input uk , vA. By adopting a sample time of T = 0.1s and taking into account the

parameters of Table 4.1, the following time-invariant model can be obtained for describing

the dynamics of the servomechanism2:

xk+1 = Axk + Buk + Γwk + Ξfk, (4.39)

yk = Cxk + vk + Θfk, (4.40)

where

A =


1 0.098 0.009

0 0.957 0.119

0 −0.048 0.013

 , B =


0.008

0.186

0.484

 , Γ = I3, Ξ =


0 0 0.008

0 0 0.186

0 0 0.484

 ,
2For the sake of simplicity, the continuous-time model is not presented here. However, it can be found

in many textbooks on control theory. See, e.g., (SHINNERS, 1992), p. 143.
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C =

 1 0 0

0 1 0

 , Θ =

 1 0 0

0 1 0

 .
The noise terms, wk and vk, and the initial state, x0, are assumed to be zero-mean

Gaussian vectors with covariances Qk = 10−6I3, Rk = 10−4I2, and P0 = I3, respectively.

Moreover, {wk}, {vk}, and x0 are mutually independent.

The fault vector at instant k is assumed to have the structure fk = bfej(s)ϑ
(s) (k − kf ),

with ej(s) ∈ R3, where s, bf , and kf are the unknown fault parameters. As mentioned

before, three fault modes are considered in the present illustration. They are described in

Table 4.2.

TABLE 4.2 – The fault modes for the illustrative example.

s fk = bfej(s)ϑ
(s)(k − kf ) Description

1 bfe1δk−kf Impulsive error in y1

2 bfe21k−kf Stepwise bias in y2

3 bfe3 sin (0.1π [k − kf ]) 1k−kf Sinusoidal interference in vA with frequency of 0.5 Hz

4.4.2 Simulation-based evaluation of the FTTS filters

The servomechanism is simulated ten thousand times in the discrete-time interval

k ∈ [1, 200] by using equations (4.39)-(4.40) and by adopting the open-loop control input

uk = 2.0×1k−10. For simplicity, in all of the runs, the alarm events are considered to occur

at instant ka = 100 3. With regard to the prior knowledge about the fault parameters,

let the fault modes of Table 4.2 be equiprobable and let the fault instants be drawn

from the PMF m(kf |s, ka) = U([96, 100]), for s = 1, 2, 3. The three fault magnitude cases

(Gaussian, gamma, and discrete) are considered separately in the subsequent items. Table

4.3 shows the fault magnitude statistics adopted in each case.

The index Ixk ,
∥∥x1,k − x̂1,k|k

∥∥ is employed for measuring the state estimation error.

3In a practical application of the FTTS filters, the alarm event may be generated, for instance, by
the χ2 detection test that decides for the fault condition if εk > tα, where εk ,

∑k
l=k−Md+1 r

′
lV
−1
l rl is

the statistic of the test and tα is a given threshold. In the absence of faults, since {rk} is a zero-mean
white Gaussian sequence with covariances {Vk}, εk is a central χ2 RV with Mdny degrees of freedom
(PAPOULIS; PILLAI, 2002). Therefore, tα might be chosen in order to achieve a given probability of false
alarm α by using the expression P (εk ≤ tα) = 1− α.
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TABLE 4.3 – The prior statistics of the fault magnitudes in SI units.

s Gaussian gamma discrete

1 Nbf (0.2000, 0.0025) Gbf (2, 0.50) Kbf (1/3, 1/3, 1/3), bf ∈ {0.010, 0.050, 0.080}
2 Nbf (0.0300, 0.0001) Gbf (2, 0.02) Kbf (1/3, 1/3, 1/3), bf ∈ {0.005, 0.010, 0.020}
3 Nbf (0.0100, 0.0001) Gbf (2, 0.01) Kbf (1/3, 1/3, 1/3), bf ∈ {0.008, 0.020, 0.050}

For measuring the estimation errors associated with the fault instant estimates and with

the fault magnitude estimates, consider the indices Ikf , |kf−k̂f | and Ibf , |(bf− b̂f )/bf |,

respectively. Note that the above indices are positive and, furthermore, the more accurate

the estimation, the smaller the value of the corresponding index. Finally, the number of

correct identification of the fault mode index, which is denoted by Nc, is employed to

evaluate the methods with respect to the estimation of s.

• Case 1: Gaussian fault magnitudes

Monte Carlo simulations are carried out by considering the Gaussian PDFs given in

Table 4.3 and by executing the FTTS filter for Gaussian fault magnitudes (Algorithm 4.9

+ Algorithm 4.18). Figure 4.2 depicts the sample means, Īxk , and standard deviations,

σxk , of the state estimation index, Ixk , obtained for different values of M1 (data set length)

by considering each value of s separately. In all scenarios, note that the state estimates

start diverging at some instant k ∈ [96, 100] with the onset of the fault. Moreover, the

errors rapidly return to the proximity of the initial level soon after the reconfiguration

performed at kc = 99 + M1. Therefore, in general, the larger the value of M1, the longer

the state estimates remain affected by the fault. Particularly, it is worth noting that in

the scenarios where s = 1 (impulsive error at y1), the fault effect is transient and, hence,

it would vanish even without reconfiguration. In other words, the conventional KF might

be sufficiently robust for dealing with such an impulsive fault.

Table 4.4 shows the statistics of the fault parameter estimation errors. For the scenar-

ios considered here, in general, the larger the data set length, M1, the larger the number

of correct identification of the fault mode index, Nc. Moreover, for s = 2 (stepwise fault

in y2) and s = 3 (sinusoidal fault in vA), note that the fault magnitude estimation is

improved by adopting a larger data set. However, the same improvement is not verified
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FIGURE 4.2 – The state estimation index – Case 1.

when s = 1. Such behavior can be explained by inspecting Figure 4.3, which shows three

realizations of the innovation sequence of the fault-free KF. For s = 1, the fault signature

on the innovation practically vanishes after about k = 120. Therefore, one can reason

that the ensuing data would not be able to improve the estimation of bf , since they have

a poor signal-to-noise ratio. For s = 2, after a transient period, the fault signature stays

around a fixed level. In this case, note that further innovations do not bring information

about kf . In fact, for s = 2, the estimation of kf is slightly impaired by increasing M1,

as verified in Table 4.4.

With regard to bf , for s = 2 and s = 3, a more significative improvement of accuracy is

verified when M1 is changed from 10 to 30. As a consequence, after reconfiguration, more

accurate state estimates are provided by the second stage of the filter, as one can confirm
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TABLE 4.4 – The fault parameter estimation errors – Case 1.

s M1 Nc

(
Īkf , σkf

) (
Ībf , σbf

)
1 10 9833 (0.906, 0.939) (0.150, 0.171)

30 9886 (0.927, 0.948) (0.149, 0.168)
50 9901 (0.946, 0.957) (0.151, 0.176)

2 10 9660 (1.105, 0.972) (0.076, 0.074)
30 9872 (1.114, 1.006) (0.049, 0.050)
50 9927 (1.122, 1.029) (0.040, 0.043)

3 10 7738 (0.567, 0.687) (0.312, 2.110)
30 7900 (0.267, 0.479) (0.136, 0.482)
50 7999 (0.198, 0.419) (0.097, 0.155)

by comparing Figure 4.2(d) with Figure 4.2(e) and Figure 4.2(g) with Figure 4.2(h).

FIGURE 4.3 – Realizations of the innovation sequence of the fault-free KF for different
fault modes.

The following two items present the simulation results referring to the FTTS filters

for the gamma distributed and discrete fault magnitudes. Note that similar conclusions

can be made about the performance of these filters. Hence, the details addressed above

are not repeated below.

• Case 2: gamma fault magnitudes

Now, Monte Carlo simulations are carried out by considering the gamma PDFs given

in Table 4.3 and by executing the FTTS filter for gamma fault magnitudes (Algorithm

4.13 + Algorithm 4.18). The results concerning the state estimation are presented in

Figure 4.4, while the fault parameter estimation results are shown in Table 4.5.

• Case 3: discrete fault magnitudes
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FIGURE 4.4 – The state estimation index – Case 2.

Finally, Monte Carlo simulations are carried out by considering the discrete distribu-

tions given in Table 4.3 and by executing the FTTS filter for discrete fault magnitudes

(Algorithm 4.16 + Algorithm 4.18). The state estimation results are presented in Figure

4.5, while the fault parameter estimation results are shown in Table 4.6.

4.5 Comments on performance analysis

A quantitative performance analysis of the FTTS filters is a formidable problem and

it will not be tackled in the present work. Instead, some qualitative insights are provided.
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TABLE 4.5 – The fault parameter estimation errors – Case 2.

s M1 Nc

(
Īkf , σkf

) (
Ībf , σbf

)
1 10 9827 (0.710, 0.817) (0.096, 0.115)

30 9882 (0.750, 0.855) (0.102, 0.127)
50 9916 (0.753, 0.859) (0.104, 0.139)

2 10 9484 (1.026, 1.008) (0.073, 0.101)
30 9864 (1.053, 1.041) (0.058, 0.116)
50 9924 (1.051, 1.043) (0.048, 0.110)

3 10 9959 (0.526, 0.796) (0.215, 0.822)
30 9970 (0.258, 0.523) (0.138, 0.551)
50 9974 (0.198, 0.448) (0.107, 0.479)

TABLE 4.6 – The fault parameter estimation errors – Case 3.

s M1 Nc

(
Īkf , σkf

) (
Ībf , σbf

)
1 10 9616 (1.264, 1.154) (0.518, 1.212)

30 9909 (1.282, 1.156) (0.565, 1.285)
50 9957 (1.283, 1.157) (0.565, 1.285)

2 10 8892 (1.630, 1.304) (0.080, 0.247)
30 9446 (1.655, 1.311) (0.029, 0.154)
50 9759 (1.656, 1.309) (0.011, 0.098)

3 10 8563 (0.354, 0.556) (0.003, 0.056)
30 9880 (0.189, 0.394) (0.000, 0.000)
50 9988 (0.153, 0.360) (0.000, 0.000)

4.5.1 Fault estimation

First consider the estimation of the fault mode index, s. The corresponding perfor-

mance could be measured by the probability of correct identification of s, Pc. As com-

mented in Section 3.3, for the purpose of computing Pc, it is necessary to know the PDFs

of the statistics of test and these statistics have to be mutually independent statistically.

Note that, in fact, the PDFs of the statistics given in Theorems 4.7, 4.10, and 4.14 cannot

be determined analytically. Moreover, the statistical independence requirement cannot be

attained, unless the proposed statistics of test could be approximated by Gaussian RVs

and the fault modes were chosen such that their signatures on the KF innovations are

mutually orthogonal.

Now, consider the estimation of kf and bf . The performance of estimators for such

parameters is commonly evaluated by their biases and variances. However, these proper-
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FIGURE 4.5 – The state estimation index – Case 3.

ties cannot be exploited here since the estimators given by Theorems 4.8, 4.12, and 4.15

are not completely explicit owing to the discrete-valued fault parameters (kf and bf in

the discrete magnitude case).

4.5.2 State estimation

In the curves presented in Figures 4.2, 4.4, and 4.5, one can generally distinguish three

time phases. The first phase corresponds to the time interval k < kf . In this phase,

the state estimators are equivalent to the fault-free KF and, therefore, they are optimal

in the MMSE sense. The second phase corresponds to the time interval kf ≤ k ≤ kc,

in which the fault detection and the fault estimation are carried out. In this phase, the

FTTS filters may exhibit a diverging behavior, with severities that depend on the fault
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magnitude. Finally, the third phase corresponds to the time interval k > kc. Here, the

state estimates are obtained as a consequence of correcting the fault-free KF outputs

using the proposed methodology. In this phase, the state estimators exhibit suboptimal

performance, which depends on the accuracy of the fault estimate provided by Stage 1. In

other words, the better the accuracy of the fault estimate, the better the state estimation

performance in this phase.

4.6 Summary

This chapter was concerned with the proposal of a method to solve Problem 2.4 by

using a decision-theoretic approach to the joint state and fault estimation. This ap-

proach was called fault-tolerant two-stage (FTTS) filtering. By considering the three

plausible models for the prior knowledge about the fault magnitudes (Assumption 2.3),

three different FTTS filters were put forward. In general terms, the filters can be de-

scribed as following. The first stage carries out fault estimation by statistically processing

the innovation sequence of a fault-free KF. The second stage performs state estimation

by correcting the fault-free KF estimates using the fault estimate provided by the first

stage. For illustration purposes, the three FTTS filters were applied to a simulated DC

servomechanism.



5 A Fault-Tolerant Model Predictive

Satellite Attitude Controller

The present chapter proposes a scheme for fault-tolerant attitude control of rigid-

body satellites. The scheme integrates the FTTS filter for Gaussian fault magnitudes (see

Chapter 4) with a fault-reconfigurable version of a conventional model predictive controller

(MPC). It will be called Fault-Tolerant Model Predictive Satellite Attitude Controller

(FTMPSAC). The text is organized in the following manner. Section 5.1 presents the

fault-prone system model. Relying on this model, the FTMPSAC is introduced and

detailed in Section 5.2. Section 5.3 is concerned with the evaluation of the overall system

performance by means of computational simulations. Finally, Section 5.4 summarizes the

present chapter.

5.1 Fault-prone system model

The system under consideration consists of a rigid-body satellite that moves in a low-

Earth orbit and includes reaction wheels, rate gyros, solar sensors, and magnetometers.

A detailed description of this system as well as the derivation of a fault-free deterministic

state-space model of its attitude dynamics is presented in Appendix A. Here, assume

that the system is subject to faults so that it can suitably be described by the fault-prone

discrete-time linear Gaussian model given by equations (2.1)-(2.2). For convenience, these
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equations are repeated:

xk+1 = Akxk + Bkuk + Γkwk + Ξkfk, (5.1)

yk = Ckxk + vk + Θkfk, (5.2)

with xk ,
[(

prb
)′
,
(
ωbrb
)′]′

, where prb is the MRP representing the attitude of Sb with

respect to Sr and ωbrb is the angular velocity of Sb with respect to Sr. The observation

vector is yk , [(bb − br)
′, (sb − sr)

′,ω′b]
′, where bb and br are representations of the local

geomagnetic density observation, sb and sr are representations of the local Sun direction

vector observation, and ωb is the observation of the inertial angular velocity of Sb. The

matrices Ak, Bk, and Ck are given in Section A.4 of Appendix A. Additionally, the state

noise gain matrix is assumed to be Γk = I6, the statistics of the state and measurement

noises are both considered to be known, and the continuous-time fault gain matrices are

assumed to have the following structures:

Ξ =

 03×3 03×3 03×3

B2 03×3 03×3

 , (5.3)

Θ =


03×3 I3 03×3

03×3 03×3 03×3

03×3 03×3 I3

 , (5.4)

where B2 is defined in equation (A.21). The corresponding discrete-time matrices, Ξk

and Θk, are obtained by discretizing Ξ and Θ, respectively, by using the same procedure

employed to calculate Bk (see equations (A.38)-(A.42)). By inspecting the above fault

gain matrices, one can conclude that the fault vector fk has dimension nf = 9, with

the first three components representing additive actuator faults, the three middle ones

representing additive magnetometer faults, and the last three components corresponding

to additive rate gyro faults.
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As defined in Chapter 2, the fault sequence, {fk}, is assumed to be a structured

sequence parameterized by three unknown parameters: the fault magnitude, the fault

instant, and the fault mode index. These parameters are assumed to be realizations of

the RVs characterized in Assumption 2.3. Particularly, only the Gaussian fault magnitude

case is taken into consideration in the present chapter. Table 5.1 specifies the fault modes

used in the present illustration. In all the cases, the fault has a stepwise form. The nine

fault modes are assumed to be equiprobable, i.e, P (s) = 1/9, s = 1, 2..., 9. The solar

sensors are assumed to be ideal in the sense that they always operate under fault-free

conditions.

TABLE 5.1 – The illustrative fault modes.

s fk = bfej(s)ϑ
(s)(k − kf ) m(kf |s, ka) p(bf |s)

1 bfe11k−kf Ukf ([ka − 20, ka]) Nbf (5× 10−4, 6.25× 10−8) [Nm]
2 bfe21k−kf Ukf ([ka − 20, ka]) Nbf (5× 10−4, 6.25× 10−8) [Nm]
3 bfe31k−kf Ukf ([ka − 20, ka]) Nbf (5× 10−4, 6.25× 10−8) [Nm]
4 bfe41k−kf Ukf ([ka − 20, ka]) Nbf (2× 10−6, 1× 10−12) [T ]
5 bfe51k−kf Ukf ([ka − 20, ka]) Nbf (2× 10−6, 1× 10−12) [T ]
6 bfe61k−kf Ukf ([ka − 20, ka]) Nbf (2× 10−6, 1× 10−12) [T ]
7 bfe71k−kf Ukf ([ka − 20, ka]) Nbf (1× 10−3, 2.5× 10−7) [rad/s]
8 bfe81k−kf Ukf ([ka − 20, ka]) Nbf (1× 10−3, 2.5× 10−7) [rad/s]
9 bfe91k−kf Ukf ([ka − 20, ka]) Nbf (1× 10−3, 2.5× 10−7) [rad/s]

5.2 The fault-tolerant control method

This section presents the fault-tolerant satellite attitude control method that integrates

a model predictive controller (MPC) with the FTTS filter for Gaussian fault magnitudes

(see Chapter 4). The resulting method will hereafter be called Fault-Tolerant Model

Predictive Satellite Attitude Controller (FTMPSAC). The satellite attitude motion is

assumed to be slow and close to the reference coordinate system (see Figure A.1) so that

the linear model given by equations (5.1)-(5.2) can effectively approximate its dynamics.
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5.2.1 The scheme for fault-tolerant control

A block diagram of the FTMPSAC is shown in Figure 5.1. It is composed of two

parts: the fault-tolerant attitude determination (FTAD) module, and the reconfigurable

MPC (RMPC) module. Besides estimating the system states x (the attitude and angular

velocity of the satellite), the FTAD can also detect and estimate a fault f, in case the

system undergoes one. It performs these functions by using the model given by equations

(5.1)-(5.2) as well as the data from the output measurements, y, and the control inputs, u.

The RMPC consists of a state-space formulated MPC whose prediction model accounts

for the fault estimate, f̂, provided by the FTAD module. The role of the RMPC is to

compute the control input u that makes the controlled output z to track a desired reference

trajectory zr in a certain optimal sense. The following two subsections detail the FTAD

and the RMPC modules.

FIGURE 5.1 – The overall fault-tolerant control scheme.

5.2.2 Fault-tolerant attitude determination

Conventional satellite attitude determination (AD) methods (BAR-ITZHACK; REINER,

1984) (BAR-ITZHACK; OSHMAN, 1985) (BAR-ITZHACK; IDAN, 1987) (LEFFERTS et al., 1982)

are commonly concerned with the attitude estimation relying on Kalman filtering and us-

ing vector observations (e.g., the observations of the Sun direction and of the geomagnetic

flux density). These methods also consider the availability of angular velocity measures,
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which are used for propagating the attitude information between consecutive acquisitions

of the vector observations. In the mentioned methods, only the kinematic equations of

motion are taken into account when deriving the system state equations. The Euler’s mo-

ment equations are obviated by treating the angular velocity measures as known inputs,

rather than measured outputs. Consequently, these methods yield a reduced computa-

tional burden and, moreover, avoid the need for using complex models for the disturbance

torques. Regardless of these advantageous characteristics, the conventional AD methods

may not perform satisfactorily in the presence of faults in actuators or sensors. In this

context, the present subsection proposes a fault-tolerant attitude determination (FTAD)

method, which is expected to perform better than the conventional ones when the system

is under fault conditions.

Let the system dynamics be described by equations (5.1)-(5.2). It is worth noting that,

unlike the conventional methods, here, the state vector xk includes the angular velocity

vector. Therefore, the angular velocity observations are not treated as known inputs any

longer. This consideration yields a state equation that is augmented with respect to the

ones of the conventional methods. However, the resulting augmented model (5.1)-(5.2)

has the form required by the FTTS filters. Therefore, by particularly considering that the

magnitudes of the fault modes shown in Table 5.1 are realizations of Gaussian RVs, the

FTTS filter for Gaussian fault magnitudes (Algorithm 4.9 + Algorithm 4.18) is adopted

as the FTAD method.

Rather than reproducing the equations of the FTTS filter, a corresponding block dia-

gram is presented in Figure 5.2. In this diagram, the fault-free KF, which is implemented

using equations (5.1)-(5.2), but considering fk = 0, ∀k, is shown to provide the uncorrected

state estimates, x̌k|k, by processing the control inputs, uk, and the measured outputs, yk.

In Stage 1, the innovation sequence of the fault-free KF, {rk}, as well as the correspond-

ing covariance sequence, {Vk}, is used as data for detecting the fault, identifying the

fault mode, and estimating the fault instant and magnitude. After the estimation of the

fault parameters, the fault estimate vectors are computed by using the appropriate fault

sequence structure hypothesized in Table 5.1. In Stage 2, the estimates of the fault-free
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FIGURE 5.2 – The fault-tolerant attitude determination method.

KF, x̌k|k, are corrected on the basis of the fault estimates computed in Stage 1 so as to

provide the corrected state estimates, x̂k|k, which, together with the fault estimates, are

the outputs of the FTAD module.

5.2.3 Reconfigurable MPC

The reconfigurable MPC (RMPC) corresponds to a conventional state-space MPC

formulation that has been modified in order to account for actuator fault estimates when

predicting the system controlled outputs, zk ∈ Rnz . It is worth noting that the sensor

faults are compensated for in the FTAD module, which already provides the RMPC with

corrected state estimates.

To begin with the derivations, the true fault, f, is supposed to be exactly known. On

the basis of this assumption, the following lemma provides the optimal MMSE predictor

for the controlled output.

Lemma 5.1 Let the controlled output at instant k + i be defined as zk+i , Czxk+i,

zk+i ∈ Rnz , where Cz is a known matrix with appropriate dimensions. Therefore, given
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the control input sequence, uk:k+i−1, the true fault sequence, fk:k+i−1, and the MMSE state

estimate at instant k, x̂optk|k, the optimal MMSE predictor of zk+i, ∀i ≥ 1, is

ẑk+i|k = Cz
i∏

j=1

Ak+i−jx̂
opt
k|k + Cz

i∑
j=1

j−1∏
l=1

Ak+i−lBk+i−juk+i−j + ...

...+ Cz
i∑

j=1

j−1∏
l=1

Ak+i−lΞk+i−jfk+i−j. (5.5)

Proof. By repeatedly replacing equation (5.1) into itself, xk+i can be expressed in terms

of uk:k+i−1, fk:k+i−1, and xk, as

xk+i =
i∏

j=1

Ak+i−jxk +
i∑

j=1

j−1∏
l=1

Ak+i−lBk+i−juk+i−j +
i∑

j=1

j−1∏
l=1

Ak+i−lΓk+i−jwk+i−j + ...

...+
i∑

j=1

j−1∏
l=1

Ak+i−lΞk+i−jfk+i−j, (5.6)

and, hence, the controlled output zk+i = Czxk+i can be rewritten as

zk+i = Cz
i∏

j=1

Ak+i−jxk + Cz
i∑

j=1

j−1∏
l=1

Ak+i−lBk+i−juk+i−j + ...

...+ Cz
i∑

j=1

j−1∏
l=1

Ak+i−lΓk+i−jwk+i−j + Cz
i∑

j=1

j−1∏
l=1

Ak+i−lΞk+i−jfk+i−j. (5.7)

On the other hand, it is well-known that the MMSE estimate of zk+i based on the measured

outputs up to instant k corresponds to the conditional expectation ẑk+i|k = E {zk+i|Yk}

(ANDERSON; MOORE, 1979). Thus, by applying this conditional expectation to equation

(5.7) and by noting that {wk} is zero-mean, equation (5.5) is obtained. �

It is worth noting that, in practice, one cannot realize predictions by using equation

(5.5), since, in general, the true fault sequence, fk:k+i−1, and the optimal state estimate,

x̂optk|k, are both unavailable. In this work, in order to yield a practical predictor for the

controlled output, the fault sequence estimate provided by the FTAD module is employed
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to replace the corresponding true fault sequence in (5.5). Moreover, the suboptimal state

estimate, x̂k|k, is used instead of x̂optk|k. The resulting prediction model is summarized in

the following definition.

Definition 5.2 The controlled output prediction model adopted by the RMPC for pre-

dicting zk+i, ∀i ≥ 1, is given by

z̄k+i|k = Cz
i∏

j=1

Ak+i−jx̂k|k + Cz
i∑

j=1

j−1∏
l=1

Ak+i−lBk+i−juk+i−j + ...

...+ Cz
i∑

j=1

j−1∏
l=1

Ak+i−lΞk+i−j f̂k+i−j, (5.8)

where f̂k:k+i−1 and x̂k|k are both provided by the FTAD module.

The essential difference between the prediction model given by Definition 5.2 and

the prediction model used by the conventional state-space formulation of the MPC (MA-

CIEJOWSKI, 2002; CAMACHO; BORDONS, 1999; ROSSITER, 2004) consists of the presence

of the last term on the right-hand side of equation (5.8), which accounts for the fault

estimate sequence provided by the FTAD module.

In the sequel, the RMPC problem is formulated.

Definition 5.3 Let u∗k denote the control input vector provided by the Reconfigurable

MPC at instant k. Additionally, let {zrk} denote a specified reference trajectory for the

controlled output of the system. The vector u∗k is defined to be the first element of the

sequence uk:k+N2−1, which minimizes the cost functional

Jk [uk:k+N2−1] =

N2∑
i=N1

∥∥z̄k+i|k − zrk+i

∥∥2

Qc
i

+

N2∑
i=1

‖uk+i−1‖2
Rc
i
, (5.9)

subject to

∆umin ≤ ∆uk+i ≤ ∆umax, i = 0, 1, ..., N2 − 1, (5.10)
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umin ≤ uk+i ≤ umax, i = 0, 1, ..., N2 − 1, (5.11)

zmin ≤ zk+i ≤ zmax, i = N1, N1 + 1, ..., N2, (5.12)

where z̄k+i|k ∈ Rnz is the controlled output prediction provided by equation (5.8). The

design parameters N1 and N2 are, respectively, the inferior and superior limits of the

prediction horizon. The matrices Qc
i ∈ Rnz×nz and Rc

i ∈ Rnu×nu are positive-definite

weighting parameters. The vectors ∆umin ∈ Rnu , ∆umax ∈ Rnu , umin ∈ Rnu , umax ∈ Rnu ,

zmin ∈ Rnz , and zmax ∈ Rnz are the constraint parameters.

The optimization problem that appears in the previous definition consists of the mini-

mization of a quadratic function subject to linear inequality constraints. For convenience

purpose, before solving this optimization problem, it will firstly be recast into the standard

format of a quadratic programming (QP) problem. To begin with, consider the follow-

ing lemma, which provides a compact representation of the controlled output predictions

along the prediction horizon, [k +N1, k +N2].

Lemma 5.4 The controlled output predictions along the prediction horizon are given,

in a compact form, by

Zk = Φx
kx̂k|k + Φf

kFk + Φu
k ,Uk, (5.13)

where Zk ,
[
z̄′k+N1|k ... z̄′k+N2|k

]′
, Fk ,

[̂
f
′
k ... f̂

′
k+N2−1

]′
, Uk ,

[
u′k ... u′k+N2−1

]′
, and, for

q = x, u, and f ,

Φq
k ,



CzφqN1,k

CzφqN1+1,k

...

CzφqN2,k


, (5.14)

with, for i = N1, ..., N2,

φxi,k ,
i∏

j=1

Ak+i−j,
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φfi,k ,

[ ∏i−1
l=1 Ak+i−lΞk

∏i−2
l=1 Ak+i−lΞk+1 ... Ak+i−1Ξk+i−2 Ξk+i−1 0nx×(N2−i)nf

]
,

φui,k ,

[ ∏i−1
l=1 Ak+i−lBk

∏i−2
l=1 Ak+i−lBk+1 ... Ak+i−1Bk+i−2 Bk+i−1 0nx×(N2−i)nu

]
,

where φxi,k ∈ Rnx×nx , φfi,k ∈ Rnx×N2nf , and φui,k ∈ Rnx×N2nu .

Proof. To obtain (5.13), it suffices to write out the output predictions z̄k+N1|k, z̄k+N1+1|k,

... , z̄k+N2|k, by using equation (5.8), and after, to arrange them into an appropriate matrix

form. �

In the following lemma, the minimization problem of Definition 5.3 is rewritten in the

standard form of a QP problem.

Lemma 5.5 The optimal control sequence, u∗k:k+N2−1, which solves the minimization

problem of Definition 5.3 can equivalently be obtained by solving the QP problem that

minimizes

J̄k [Uk] =
1

2
U′k
(
(Φu

k)
′QΦu

k +R
)

Uk + γ ′kQΦu
kUk, (5.15)

subject to

AUk ≤ B, (5.16)

where Uk and Φu
k were defined in Lemma 5.4, Zr

k ,

[
(zrk+N1

)′ (zrk+N1+1)′ ... (zrk+N2
)′
]′

,

γk , Φx
kx̂k|k + Φf

kFk − Zr
k, Q and R are the block diagonal matrices given by

Q ,



Qc
N1

0 0 ... 0

0 Qc
N1+1 0 ... 0

...

0 0 0 ... Qc
N2


, R ,



Rc
1 0 0 ... 0

0 Rc
2 0 ... 0

...

0 0 0 ... Rc
N2


,
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and the constraint parameters A and B are

B ,



∆Umax + U0
k−1

−∆Umax −U0
k−1

Umax

−Umax

Zmax −Φx
kx̂k|k −Φf

kFk

−Zmin + Φx
kx̂k|k + Φf

kFk


, A ,



A1

−A1

IN2nu

−IN2nu

Φu
k

−Φu
k


,

with

A1 ,



Inu 0 0 ... 0 0

−Inu Inu 0 ... 0 0

0 −Inu Inu ... 0 0

...

0 0 0 ... −Inu Inu


,

∆Umin ,



∆umin

∆umin
...

∆umin


,∆Umax ,



∆umax

∆umax
...

∆umax


,Umin ,



umin

umin
...

umin


,Umax ,



umax

umax
...

umax


,

Zmin ,



zmin

zmin
...

zmin


,Zmax ,



zmax

zmax
...

zmax


,U0

k−1 ,



uk−1

0

...

0


,

where uk−1 is the control input vector generated by the RMPC at instant k − 1. The

dimensions of the above matrices are summarized in Table 5.2.

Proof. First, if one takes into account the matrices Zk and Uk defined in Lemma 5.4,

and the matrices Zr
k, Q, and R defined in the enunciation of Lemma 5.5, then the cost
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TABLE 5.2 – The dimensions of the RMPC matrices.

Matrix Dimension

∆Umin, ∆Umax, Umin, Umax, U0
k−1 N2nu × 1

Zmin, Zmax (N2 −N1 + 1)nz × 1
A1, R N2nu ×N2nu
A [(4N2nu + 2(N2 −N1 + 1)nz]×N2nu
B [(4N2nu + 2(N2 −N1 + 1)nz]× 1
Q (N2 −N1 + 1)nz × (N2 −N1 + 1)nz

function (5.9) can be rewritten as

Jk [Uk] = (Zk − Zr
k)
′Q (Zk − Zr

k) + U′kRUk. (5.17)

Replacing equation (5.13) into equation (5.17), and making some algebraic manipulations,

the latter becomes

Jk [Uk] = γ ′kQγk + U′k (Φu
k)
′QΦu

kUk + 2γ ′kQΦu
kUk + U′kRUk. (5.18)

By noting that the first term on the right-hand side of the above equation does not depend

on Uk and, therefore, can be neglected, the equivalent cost function (5.15) can immediately

be obtained. Now, it remains to show the equivalence between equations (5.10)-(5.12) and

equation (5.16). Note that the constraints in equation (5.10) can be written out as



∆umin

∆umin
...

∆umin


≤



uk − uk−1

uk+1 − uk
...

uk+N2−1 − uk+N2−2


≤



∆umax

∆umax
...

∆umax


. (5.19)

From equation (5.19), the following two inequalities are obtained:

A1Uk ≤ ∆Umax + U0
k−1, (5.20)

−A1Uk ≤ −∆Umin −U0
k−1, (5.21)
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where A1, ∆Umax, ∆Umin, and U0
k−1 were defined in the enunciation of Lemma 5.5.

Now, consider explicitly writing the constraints (5.11), which become



umin

umin
...

umin


≤



uk

uk+1

...

uk+N2−1


≤



umax

umax
...

umax


. (5.22)

From equation (5.22), the following two inequalities are obtained:

IN2nuUk ≤ Umax, (5.23)

−IN2nuUk ≤ Umin, (5.24)

where IN2nu is the identity matrix of dimension N2nu, and Umax and Umin are as defined

in the enunciation of Lemma 5.5. Finally, the constraints given by equation (5.12), can

be rewritten as 

zmin

zmin
...

zmin


≤



z̄k+N1|k

z̄k+N1+1|k

...

z̄k+N2|k


≤



zmax

zmax
...

zmax


, (5.25)

which, by using the prediction model (5.13), yields

Φu
kUk ≤ Zmax −Φx

kx̂k|k −Φf
kFk, (5.26)

−Φu
kUk ≤ Zmin + Φx

kx̂k|k + Φf
kFk. (5.27)

Thus, by putting together the inequalities (5.20), (5.21), (5.23), (5.24), (5.26), and (5.27),

equation (5.16) is obtained. �

The previous lemma has recast the problem of generating the control input, uk, to a
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standard optimization problem, for which numerous solution methods are available. MA-

CIEJOWSKI (2002) suggests using interior point or active set methods for solving problems

such as the one given in Lemma 5.5. In the particular RMPC problem without constraints

on Uk, the unique solution can be determined in closed form, as given by the following

theorem.

Theorem 5.6 The unique unconstrained solution to the QP problem of Lemma 5.5 is

given by

U∗k = −
(
(Φu

k)
′QΦu

k +R
)−1

(Φu
k)
′Qγk. (5.28)

Proof. By differentiating J̄k (which is given by equation (5.15)) with respect to Uk, one

gets

∂J̄k
∂Uk

=
(
(Φu

k)
′QΦu

k +R
)
Uk + (Φu

k)
′Qγk, (5.29)

which can be differentiated again with respect to Uk, yielding the Hessian matrix:

∂2J̄k
∂U2

k

= (Φu
k)
′QΦu

k +R. (5.30)

Recall that in Definition 5.3, it was established that the weighting matrices Rc
i and Qc

i ,

for ∀i, are positive-definite. Hence, it follows immediately that the Hessian in equation

(5.30) is also positive-definite. In this case, J̄k is a convex quadratic function of Uk and,

therefore, its unique global unconstrained minimum is attained at U∗k, which can be found

by simply making the right-hand side of (5.29) equal to zero and solving the resulting

expression for Uk. This procedure yields

(
(Φu

k)
′QΦu

k +R
)
U∗k + (Φu

k)
′Qγk = 0, (5.31)

which immediately results in equation (5.28). �
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5.3 Simulation Results

In this section, the FTMPSAC method is evaluated in three different fault scenarios

by means of computational simulations.

5.3.1 Simulation of the satellite motion

The attitude motion of the satellite is simulated by integrating the nonlinear differ-

ential equations (A.12)-(A.13) derived in Appendix A. The initial condition is given by

[
(
prb
)′ (

ωbrb
)′ ]′ ∼ Nx0(x̄0,P0), with x̄0 = 06×1 and

P0 =

 0.01I3 03×3

03×3 0.0001I3

 .
The fourth-order Runge-Kutta method with an integration step of h = 1s is used. The

reference CCS (Sr) is assumed to be aligned with the inertial CCS (Si), i.e., Dri = I3. The

axes of the body CCS (Sb) are assumed to be the principal axes of inertia and the principal

moments of inertia of the body are Ix = 6.5 kgm2, Iy = 8.0 kgm2, and Iz = 6.5 kgm2. The

moment of inertia of each reaction wheel is Iw = 1.0 kgm2. The Sb-representation of the

vector of residual magnetic moments is δmb = [ −1 1 −1 ]′ Am2. The orbital motion

is simulated by using a Keplerian model with the orbital parameters given in Table 5.3.

The simulation epoch starts at 1:00 A.M. (GMT) on June 10, 2005, and has a duration

of 500 seconds.

TABLE 5.3 – Orbital parameters.

Parameter Value

Semimajor axis 7128 km
Eccentricity 0
Inclination 25 degree
Right ascension −40 degree
Argument of perigee 12 degree
Perigee time 0

The solar sensors are assumed to directly provide measurements of the Sb-representations
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of the unit vectors pointing towards the Sun. These vectors are computed by using an

analytical model for the translational motion of the Earth around the Sun [see (VALLADO,

2004), pg. 276]. For the sake of simplicity, eclipses are not considered to occur, so that

the data from the solar sensors are always available. The magnetometers provide local

measurements of the Sb-representations of the geomagnetic flux density. These vectors

are computed using the World Magnetic Model WMM2005 (MCLEAN et al., 2004). Noise

terms with zero means and Gaussian distributions are added to all of the measurements.

Table 5.4 shows the statistics of these measurement noises.

TABLE 5.4 – Covariance matrices of the measurement noises.

Measurement Covariance

Geomagnetic field vector 4.0× 10−14I3 [T 2]
Sun direction 1.0× 10−4I3 [dimensionless]
Inertial angular velocity 1.0× 10−10I3 [(rad/s)2]

The FTMPSAC is evaluated in three fault scenarios. In scenario A, the fault belongs

to the mode s = 1, i.e., it consists of a step friction torque acting on the reaction wheel

that is aligned with Xb (see Table 5.1). In scenario B, the fault is of the mode s = 5,

corresponding to a bias on the magnetometer that is aligned with Yb. In scenario C, the

fault belongs to the mode s = 9, consisting of a bias on the rate gyro that is aligned

with Zb. As in Chapter 4, for simplicity, the fault detection module is assumed to always

generate the alarm events at a fixed instant, ka = 200.

5.3.2 Configuration of the FTMPSAC

The parameters of the FTAD module are given in Table 5.5. The length of the data

set for fault estimation, M1, may have three optional values, whose effects on the system

performance will be evaluated. The covariance Qk has been adjusted by trial and error in

order to reach a good convergence rate. Note that Rk and P0 are equal to the covariances

used for simulating the measurement noises and the initial state condition, respectively.

The parameters of the RMPC are given in Table 5.6. Note that the value of Cz is such

that the controlled output corresponds to the MRP vector. The limits of the prediction
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TABLE 5.5 – Parameters of the FTAD module in SI units.

Parameter Value

M1 3; 5; 10
P0 diag (1.0× 10−2I3, 1.0× 10−4I3)
x̂0|0 06×1

Qk 1.0× 10−12I6, ∀k
Rk diag (4.0× 10−14I3, 1.0× 10−4I3, 1.0× 10−10I3), ∀k

horizon, N1 and N2, as well as the weighting matrices, Qc
i and Rc

i , have been chosen by

trial and error in order to yield a reasonable control performance with a moderate energy

consumption by the reaction wheels. The MPC constraint parameters have been selected

so that the constraint inequality (5.16) always stays inactive throughout the optimization

processes, avoiding the need for dealing with an eventual infeasibility problem.

TABLE 5.6 – Parameters of the RMPC in SI units.

Parameter Value

Cz [I3 03×3]
N1 2
N2 15
Qc
i I3, ∀i

Rc
i 0.01I3, ∀i

zmin, zmax −0.51N2 , 0.51N2

umin, umax −0.21N2 , 0.21N2

∆umin, ∆umax −0.11N2 , 0.11N2

5.3.3 Monte Carlo simulation results

For evaluating the performance of the proposed control system, consider the following

four indices:

Ic = arccos

(
1

2

[
tr
(
Drb
)
− 1
])

, (5.32)

Ie = arccos

(
1

2

[
tr
(
D̂
rb′Drb

)
− 1
])

, (5.33)

Iu = ‖u‖ , (5.34)
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Iw =
∥∥ωwbb ∥∥ , (5.35)

where Drb is the true attitude matrix, D̂
rb

is the estimate of the attitude matrix (which

corresponds to the estimate of the MRP, p̂rb), u is the control input generated by the

reaction wheels, and ωwbb contains the angular velocities of the wheels relative to the

satellite body. It is worth noting that the indices Ic and Ie correspond to the angles of

the Euler axis/angle attitude representations that are equivalent to the matrices Drb and

D̂
rb′Drb, respectively [see reference (WERTZ, 1978), p. 412]. Therefore, by inspection,

one can see that Ic is a measure of the attitude control error, while Ie is a measure of

the attitude estimation error. The indices Iu and Iw are adopted to evaluate the usage

of the reaction wheels along the system operation. The indices Ikf , Ibf , and Nc defined

in Subsection 4.4.2 are also adopted here to evaluate the performance with regard to the

estimation of kf , bf , and s, respectively.

For each of the three scenarios, three Monte Carlo simulations of 10000 runs of the

overall fault-tolerant system were carried out M1. The sample statistics (mean and stan-

dard deviation) of the indices Ic, Ie, Iu, and Iw obtained for M1 = 10 in scenarios A, B,

and C are shown, respectively, in Figure 5.3, Figure 5.4, and Figure 5.5. The statistics of

the fault parameter estimation indices, Ikf and Ibf , are summarized in Table 5.7. Some

comments are presented below.

• Scenario A: In Figure 5.3(a), it can be observed that from the onset of the fault

at some instant kf ∈ [180, 200] up to the reconfiguration instant around k = 210,

the estimation errors exhibit a diverging behavior. However, this tendency is im-

mediately eliminated after reconfiguration. The same behavior is observed in the

control error index (Figure 5.3(b)), which is observed to be lower limited by the

estimation error index. Therefore, as expected, to reach a good feedback control

performance, it is necessary to have a good estimation performance. Regarding the

actuator usage, Figure 5.3(c) shows that Iu has a transitory increase at the reconfig-

uration, after which the actuator torques become essentially constant, but slightly
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larger than those applied before the fault occurrence. This is explained by the fact

that the fault, in this scenario, is indeed a torque and, therefore, additional torque

is required for compensating for its effects. One of the consequences is observed in

Figure 5.3(d), which shows that the reaction wheels start accelerating after recon-

figuration. Table 5.7 shows that, for scenario A, by increasing M1 from 3 to 10, both

the identification of the fault mode and the estimation of kf and bf are improved.

FIGURE 5.3 – Simulation results for scenario A and M1 = 10.

• Scenario B: As observed in Figure 5.4, regarding the indices Ie and Ic, the results

for scenario B are very similar to those obtained for scenario A. However, Figure

5.4(c) shows that after the reconfiguration transient, the control torque returns to

its previous level. In consequence, as observed in Figure 5.4(d), the velocities of the

wheels only undergo a transitory oscillation. Note that, different from the previous

scenario, the controller does not provide additional compensating torque, since the

fault of scenario B is just a measurement bias whereas in scenario A it was a friction

torque. Table 5.7 shows that, for scenario B, by increasing M1 from 3 to 10, both

the identification of the fault mode and the estimation of kf and bf are improved.
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FIGURE 5.4 – Simulation results for scenario B and M1 = 10.

• Scenario C: The results for this scenario are similar to the previous case, which also

corresponds to a sensor fault. The major difference observed here consists of the

insignificant degradation of the state estimation after reconfiguration with respect

to the performance observed before the fault occurrence. This is explained by the

fact that even in the absence of the measurements from the rate gyros, the attitude

and angular velocity could have been estimated uniquely from the attitude sensors

(the solar sensors and magnetometers) (AZOR et al., 1998). Table 5.7 shows that, for

scenario C, by increasing M1 from 3 to 10, both the identification of the fault mode

and the estimation of kf and bf are improved.

To finalize, for the pupose of comparison, a simple scheme composed by a conventional

MPC and a linearized KF is taken into account. For brevity, it is called MPC-KF.

All of its configuration parameters are chosen to be equal to the corresponding ones

in the FTMPSAC. Figure 5.6 shows the statistics of Ie for the MPC-KF scheme under

scenarios A, B, and C. It is worth noting that, from the beginning of system operation

until the reconfiguration instant, both methods, MPC-KF and FTMPSAC, are equivalent.
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FIGURE 5.5 – Simulation results for scenario C and M1 = 10.

Nevertheless, after reconfiguration, the MPC-KF scheme, as expected, presents a degraded

performance since it does not adopt any fault remedy.

FIGURE 5.6 – State estimation errors obtained with the MPC-KF scheme under scenarios
A, B, and C.

5.4 Summary

This chapter presented a novel fault-tolerant satellite attitude control method. It is

suitable for controlling rigid-body satellites equipped with reaction wheels, rate gyros,

solar sensors, and magnetometers. This method consists of an integration of an FTTF
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TABLE 5.7 – The fault parameter estimation errors.

Scenario M1 Nc (Īkf , σkf ) (Ībf , σbf )

A 3 9814 (0.6151, 1.5095) (0.0499, 0.2256)
5 9849 (0.4324, 1.2330) (0.0308, 0.1214)
10 9877 (0.3036, 1.0114) (0.0219, 0.1467)

B 3 9797 (8.6299, 5.6667) (0.0971, 0.5738)
5 9825 (8.5010, 5.6382) (0.0860, 0.5865)
10 9834 (8.2433, 5.5858) (0.0752, 0.5586)

C 3 9916 (0.3041, 0.9364) (0.0135, 0.0493)
5 9934 (0.2216, 0.7707) (0.0100, 0.0317)
10 9952 (0.1756, 0.7503) (0.0073, 0.0473)

filter with a fault-reconfigurable version of a conventional state-space formulation of the

MPC. Computational simulations were carried out. The results demonstrated the effec-

tiveness of the FTMPSAC method when the system was considered to operate in three

fault scenarios: a friction torque in a reaction wheel, a bias in the measurements of a rate

gyro, and a bias in the measurements of a magnetometer.

In future works, the FTMPSAC method could be improved by augmenting the set of

inequality constraints of the RMPC in order to include limitations on the angular velocities

of the reaction wheels. One can conjecture that such an improvement may prevent the

wheels of undergoing speed saturation conditions.



6 Conclusion

This thesis has been concerned with the joint state and fault estimation of discrete-

time linear systems subject to additive faults. Unlike the literature on state estimation

of systems subject to unknown inputs (GILLIJNS; MOOR, 2007b; HSIEH, 2010; WILLSKY;

JONES, 1976; HMIDA et al., 2010), in the present work, prior knowledge about the fault pa-

rameters was assumed to be available and compactly represented by appropriately defined

probability distributions. The investigation can be summarized as follows:

• In Chapter 2, a fault-tolerant state estimation (FTSE) problem has been defined

(Problem 2.4). It is a joint state and fault estimation in a recursive filtering frame-

work. Problem 2.4 has assumed that the system dynamics can be described by a

discrete-time linear Gaussian state-space model subject to additive faults on both

the state and measurement equations. The sequence of fault vectors has been de-

fined as a structured sequence parameterized by three fault parameters: the fault

magnitude (which represents the severity of the fault), the fault instant (which rep-

resents the onset of the fault), and the fault mode index (which represents the form

and location of the fault). These parameters have been considered as realizations of

particularly defined random variables, which account for the prior knowledge about

the fault.

• In Chapter 4, Problem 2.4 has been tackled by a suboptimal (but implementable)

fault-tolerant two-stage (FTTS) filtering approach. By separately taking into ac-

count the three alternative models for the prior knowledge about the fault magnitude

parameter, three FTTS filters have been derived. In general, the structure of the
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FTTS filters can be described as follows. In the first stage, the fault parameters are

estimated by statistically processing the innovation sequence of a fault-free KF. For

this end, it has been adopted the Bayesian approach, with which the prior knowl-

edge about the fault parameters can naturally be considered. On the other hand,

the second stage of the filters carries out state estimation by correcting the fault-free

KF on the basis of the fault estimate provided by the first stage. This correction is

such that the state estimates would be the optimal (MMSE) ones if the fault esti-

mate were replaced by the true fault. It has been pointed out in Section 4.5 that the

formal analysis of the FTTS filters is a mathematically intractable problem. Hence,

numerical simulations have been carried out in order to evaluate their performance

on a specific illustrative system.

• In Chapter 5, the FTTS filter for Gaussian fault magnitudes has been employed in

a fault-tolerant attitude control system for rigid body satellites equipped with rate

gyros, magnetometers, solar sensors, and reaction wheels. A conventional state-

space formulation of the model predictive control (MPC) has been adopted as the

basic control strategy. However, the internal prediction model of the proposed fault-

tolerant MPC (FTMPC) has been modified so as to account for the fault estimate

provided by an FTTS filter. Simulation results have shown the capability of the

method to accommodate the effects of both sensor and actuator faults. Although

the above FTMPC method has been introduced in the context of satellite attitude

control, it is worth mentioning that it can be applied to any system whose dynamics

can be described by the fault-prone system model defined in Chapter 2.

Some future works that might be developed on the basis of the framework established

in the present investigation are listed below.

1. To attempt solving Problem 2.4 by using the Bayesian filtering approach. Note

that, in this case, one firstly needs to look for the joint posterior PDF of the state

and fault parameters. Then, to obtain the required estimates, it is necessary to

evaluate mean values from such PDF. Although this is a mathematically intricate
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problem, Sequential Monte Carlo techniques might be employed in order to achieve

approximate solutions. The resulting methods could be compared with the FTTS

filters.

2. To implement the FTTS filters in a real-time computer for embedded system applica-

tions. In such a work, the computational complexity of the filters should be assessed.

More efficient algorithms might be necessary for attaining satisfactory numerical ac-

curacy. The resulting real-time computer could be tested in a Hardware-in-the-Loop

(HIL) simulation scheme.

3. To fit the fault parameter PDFs established in Assumption 2.3 to historical experi-

mental fault data sets. Such an investigation might be able to evaluate in practice

the statistical models considered throughout the present work for representing the

prior knowledge about the fault parameters. Moreover, different model types might

be revealed thereby.

4. To extend Problem 2.4 for dealing with multiple faults. Problem 2.4 has only treated

single faults. However, in practice, as a consequence of a first fault, some other faults

may develop in the system. By using multiple fault estimations and corrections, the

FTTS filters could be extended to tackle such multiple fault situations.

5. To extend Problem 2.4 for dealing with multiplicative faults. Note that the diffi-

culty of applying the FTTS filtering approach for treating multiplicative faults stems

from the impossibility of exactly predicting the fault mode signatures on the inno-

vation of the fault-free KF. Hence, the fault estimation problem cannot be recast

into the statistical processing framework established in Problem 4.3, unless those

signatures could be approximated somehow. On the other hand, note that by using

the Bayesian filtering approach, at first sight, both additive and multiplicative faults

can be addressed indistinctly.

6. To extend Problem 2.4 for dealing with nonlinear systems. Like in the above item,

it would not be possible to exactly compute the fault mode signatures on the fault-

free KF innovations if the system model were nonlinear. In this case, for extending
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the FTTS filters, one could attempt to adopt simulated signatures rather than

analytically computed signatures. Alternatively, note that such extended problem

may be tackled by using the Bayesian filtering approach together with sequential

Monte Carlo techniques.

7. To evaluate the performance of the FTTS filters in a quantitative, but not necessarily

analytical manner. From such analysis, one could derive a criterion for selecting the

data set length, M1. Additionally, it is important to address the robustness of the

filters with respect to both model uncertainties and unpredicted fault modes.

8. To derive new versions of the fault-estimation stage of the FTTS filters by consid-

ering either a unique hypothesis test or a unique MAP parameter estimator. Such

alternative derivations may be compared with the ones proposed in Section 4.2.
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HMIDA, F. B.; KHéMIRI, K.; RAGOT, J.; GOSSA, M. Unbiased minimum-variance filter

for state and fault estimation of linear time-varying systems with unknown disturbances.

Mathematical Problems in Engineering, 2010.

HSIEH, C. Extension of unbiased minimum-variance input and state estimation for sys-

tems with unknown inputs. Automatica, v. 45, p. 2145–2153, 2009.



BIBLIOGRAPHY 110

HSIEH, C.-S. On the global optimality of unbiased minimum-variance state estimation

for systems with unknown inputs. Automatica, v. 46, p. 708–715, 2010.

HSIEH, C.-S.; CHEN, F.-C. Optimal solution of the two-stage kalman estimator. IEEE

Transactions on Automatic Control, v. 44(1), p. 194–199, 1999.

IGNAGNI, M. An alternate derivation and extension of friedlands two-stage kalman esti-

mator. IEEE Transactions on Automatic Control, AC-26(3), p. 746–750, 1981.

IGNAGNI, M. Separate-bias kalman estimator with bias state noise. IEEE Transactions

on Automatic Control, v. 35(3), p. 338–341, 1990.

IGNAGNI, M. Optimal and suboptimal separate-bias kalman estimators for a stochastic

bias. IEEE Transactions on Automatic Control, v. 45(3), p. 547–551, 2000.

ISERMANN, R. Fault-diagnosis systems - an introduction from fault detection

to fault tolerance. [S.l.]: Berlin: Springer-Verlag, 2006.

JAZWINSKI, A. H. Stochastic process and filtering theory. [S.l.]: New York: Aca-

demic Press, 1970.

KAILATH, T. A view of three decades of linear filtering theory. IEEE Transactions on

Information Theory, IT-20(2), p. 146–181, 1974.

KAILATH, T.; SAYED, A. H.; HASSIBI, B. Linear Estimation. [S.l.]: New Jersey:

Prentice Hall, 2000.

KALMAN, R. E. A new approach to linear filtering and prediction problems. Transac-

tions of the ASME–Journal of Basic Engineering, v. 82, n. Series D, p. 35–45,

1960.



BIBLIOGRAPHY 111

KAY, S. M. Fundamentals of Statistical Signal Processing: Detection Theory.

[S.l.]: New Jersey: Prentice Hall, 1998.

KAY, S. M. Fundamentals of Statistical Signal Processing: Estimation Theory.

[S.l.]: New Jersey: Prentice Hall, 1998.

KIM, K. H.; LEE, J. G.; PARK, C. G. Adaptive two-stage extended kalman filter for a

fault-tolerant ins-gps loosely coupled system. IEEE Transactions on Aerospace and

Electronic Systems, v. 45(1), p. 125–137, 2009.

KITANIDIS, P. K. Unbiased minimum-variance linear state estimation. Automatica, v.

23(6), p. 775–778, 1987.

KOLMOGOROV, A. N. Interpolation and extrapolation of stationary random processes.

Bull. Acad. Sci. USSR, v. 5, 1941.

KUO, B. C.; GOLNARAGHI, M. F. Automatic Control Theory. [S.l.]: John Wiley

& Sons, 2003.

LEFFERTS, E. J.; MARKLEY, F. L.; SHUSTER, M. D. Kalman filtering for spacecraft

attitude estimation. Journal of Guidance, Control, and Dynamics, v. 5(5), p. 417–

429, 1982.

MACIEJOWSKI, J. M. Predictive Control with Constraints. [S.l.]: Harlow: Prentice

Hall, 2002.

MAHMOUD, M.; JIANG, J.; ZHANG, Y. Active Fault Tolerant Control Systems

- Stochastic Analysis and Synthesis. In Lecture Notes in Control and Infor-

mation Sciences. [S.l.]: Berlin: Springer-Verlag, 2003.



BIBLIOGRAPHY 112

MCAULAY, R. J.; DENLINGER, E. A decision-directed adaptive tracker. IEEE Trans-

actions on Aerospace and Electronic Systems, AES-9(2), p. 229–236, 1973.

MCLEAN, S.; MACMILLAN, S.; MAUS, S.; LESUR, A.; THOMSON, D.; DATER, D.

The US/UK World Magnetic Model for 2005-2010. [S.l.], 2004.

MENDEL, J. M. Extension of friedland’s bias filtering technique to a class of nonlinear

systems. IEEE Transactions on Automatic Control, AC-21, p. 296–298, 1976.

NARASIMHAN, S.; MAH, R. S. H. Generalised likelihood ratios for gross erros identifi-

cation in dynamic systems. AIChE J, v. 34, n. 1, p. 1321–1332, 1988.

OGATA, K. Modern control engineering. [S.l.]: New Jersey: Prentice Hall, 1970.

ORCHARD, M. E. A Particle filtering-based framework for on-line fault diag-

nosis and failure prognosis. Tese (Doutorado) — Georgia Institute of Technology,

2007.

PAPOULIS, A.; PILLAI, S. U. Probability, Random Variables, and Stochastic

Processes. [S.l.]: New York: McGraw-Hill, 2002.

PATTON, R. J. Fault-tolerant control systems: 1997 situation. In: In Proceedings

of the IFAC Symposium SAFEPROCESS 1997, Hull, UK. [S.l.: s.n.], 1997. p.

1033–1054.

PRAKASH, J.; NARASIMHAN, S.; PATWARDHAN, S. C. Integrating model based

diagnosis with model predictive control. Ind. Eng. Chem. Res., v. 44, n. 2, p. 4344–

4260, 2005.



BIBLIOGRAPHY 113

PRAKASH, J.; PATWARDHAN, S. C.; NARASIMHAN, S. A supervisory approach to

fault-tolerant control of linear multivariable systems. Ind. Eng. Chem. Res., v. 41, p.

2270–2281, 2002.

RAPOPORT, I.; OSHMAN, Y. Efficient fault tolerant estimatio using the imm method-

ology. In: AIAA Guidance, Navigation, and Control Conference and Exhibit.

Providence, Rhode Island: [s.n.], 2004. p. 1–18.

RAPOPORT, I.; OSHMAN, Y. Fault tolerant particle filtering using imm-based rao-

blackwellization. In: AIAA Guidance, Navigation, and Control Conference and

Exhibit. Providence, Rhode Island: [s.n.], 2004. p. 1–13.

ROSSITER, J. A. Model-Based Predictive Control. [S.l.]: New York: CRC Press,

2004.

SANTOS, D. A. dos; YONEYAMA, T. Fault-tolerant attitude determination system of

an earth-pointing satellite. In: 20th International Congress of Mechanical Engi-

neering. Gramado-RS, Brazil.: [s.n.], 2009.
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Brazil: [s.n.], 2010. p. 2883–2890.

SANTOS, D. A. dos; YONEYAMA, T. A bayesian solution to the multiple composite

hypothesis testing for fault diagnosis in dynamic systems. Automatica, v. 47(1), n. 1, p.

158–163, 2011.



BIBLIOGRAPHY 114

SANYAL, P.; SHEN, C. N. Bayes decision rule for rapid detection and adaptive estimation

scheme with space applications. IEEE Transactions on Automatic Control, v. 19(3),

p. 228–231, 1974.

SCHARF, L. L. Statistical Signal Processing: Detection, Estimation, and Time

Series Analysis. [S.l.]: Addison-Wesley Publishing Company, 1991.

SHINNERS, S. M. Modern Control System Theory and Design. [S.l.]: New York:

John Wiley & Sons, 1992.

SHUSTER, M. D. A survey of attitude representations. The Journal of the Astronau-

tical Sciences, v. 41(4), p. 439–517, 1993.

SIGALOV, D.; OSHMAN, Y. A new formulation of fault-tolerant estimation problems

and some solutions. In: IEEE 26-th Convention of Electrical and Electronics

Engineers in Israel. [S.l.: s.n.], 2010. p. 626–630.

SORENSON, H. W. Least-squares estimation: from gauss to kalman. IEEE Spectrum,

p. 63–68, 1970.

SORENSON, H. W. Kalman Filtering: Theory and Application. [S.l.]: Montvale:

IEEE Press, 1985.

TUNG, W. Group Theory in Physics. [S.l.]: Philadelphia: World Scientific, 1985.

VALLADO, D. A. Fundamentals of Astrodynamics and Applications. [S.l.]: Mi-

crocosm Press, 2004.

VERMA, V. Tractable particle filters for robot fault diagnosis. Tese (Doutorado)

— Carnegie Mellon University, 2004.



BIBLIOGRAPHY 115

WAHNON, E.; BENVENISTE, A.; GHAOUI, L. E.; NIKOUKHAH, R. An optimum

robust approach to statistical failure detection and identification. In: Proceedings of

the 30th Conference on Decision and Control. Brighton, England: [s.n.], 1991. p.

650–655.

WERTZ, J. R. (Ed.). Spacecraft attitude determination and control. [S.l.]: Kluwer

Academic Publisher, 1978.

WIENER, N. Extrapolation, Interpolation, and Smoothing of Stationary Time

Series. [S.l.]: New York: Technology Press and Wiley, 1949.

WILLSKY, A. S. Detection of abrupt changes in dynamic systems. In: Lecture Notes

in Control and Information Sciences, v. 77, p. 27–49, 1986.

WILLSKY, A. S.; JONES, H. L. A generalized likelihood ratio approach to the detection

and estimation of jumps in linear systems. IEEE Transactions on Automatic Control,

AC-21, n. 1, p. 108–112, 1976.

ZHANG, Y.; JIANG, J. Bibliographical review on reconfigurable fault-tolerant control

systems. In: Proceeding of the 5th IFAC Symposium on Fault Detection, Su-

pervision and Safety for Technical Processes. Washington, D.C., USA: [s.n.], 2003.

p. 265–276.

ZHANG, Y.; LI, X. R. Detection and diagnosis of sensor and actuator failures using imm

estimator. IEEE Transactions on Aerospace and Electronic Systems, v. 34(4),

n. 4, p. 1293–1313, 1998.



BIBLIOGRAPHY 116

ZHOU, D. H.; SUN, Y. X.; XI, Y. G.; ZHANG, Z. J. Extension of friedlands separate-bias

estimation to randomly time-varying bias of nonlinear systems. IEEE Transactions on

Automatic Control, v. 38(8), p. 1270–1273, 1993.



Appendix A - Satellite Attitude

Dynamics

The present appendix provides a detailed derivation of a deterministic state-space

model for the attitude dynamics of a rigid-body satellite. The text is organized in the fol-

lowing manner. Section A.1 presents some preliminary definitions and notations. Section

A.2 derives the nonlinear dynamic models for the satellite attitude motion. Moreover,

it presents the nonlinear measurement models relating the data from rate gyros, magne-

tometers, and solar sensors with the satellite attitude and angular velocity. Section A.3

provides a deterministic continuous-time linearized state-space model. Finally, Section

A.4 presents a discretized state-space model.

A.1 Preliminary definitions

Three Cartesian coordinate systems (CCS) will be considered throughout. They are

illustrated in Figure A.1. The body CCS, denoted by Sb = {Xb, Yb, Zb}, is centered at

the satellite center of mass (CM) and is fixed in its body. The reference CCS, denoted

by Sr = {Xr, Yr, Zr}, is also centered at CM, but it is not attached to the satellite. Its

axes are aligned with a required direction that depends on the mission specifications.
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The inertial CCS, denoted by Si = {Xi, Yi, Zi}, is Earth-centered and its axes have the

following orientation: Xi points towards the vernal equinox, Zi is aligned with the Earth’s

rotation axis, and Yi completes the orthogonal right-hand oriented coordinate system.

FIGURE A.1 – Cartesian coordinate systems.

Let ~r denote a vector representing a physical quantity. It can be represented in

any CCS. For example, the representation of ~r in Sb, which will hereafter be called

the Sb-representation of ~r, is denoted by rb ∈ R3. Likewise, the Sr-representation and

the Si-representation of ~r are denoted by rr and ri, respectively. The attitude matrix

Drb ∈ SO(3) 1 transforms Sr-representations into the corresponding Sb-representations,

i.e., rb = Drbrr. Although such a matrix represents a general coordinate transformation,

it is inconvenient to deal with it since it involves nine scalar parameters, while only three

ones are sufficient. In this case, Drb may be parameterized by a vector p ∈ Rnp , where

3 ≤ np ≤ 9. In this work, p is chosen to be the vector of modified Rodrigues parameters

(MRP), whose dimension is np = 3. Let the angular velocity of Sb with respect to Sr be

~ωbr. Therefore, its Sb-representation is denoted by ωbrb . Time-differentiation will often be

denoted by the dot notation, e.g., ṙb. However, in certain cases, a vector representation

in some CCS needs being time-differentiated with respect to an observer that is attached

1SO(3) denotes the Special Orthogonal Group (TUNG, 1985). A given matrix D belongs to SO(3) if
D ∈ R3×3, D′D = I3, and det (D) = 1.
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to another CCS. In such situations, the notation exemplified by
r
rb is adopted. It means

that the Sb-representation rb is time-differentiated by an observer that is attached to Sr.

It is useful to make explicit the relationship between time derivatives of vectors with

respect to different CCSs. It can be shown that (GOLDSTEIN, 2002) given a representation

r of a vector ~r,

i
r =

b
r + ωbi × r, (A.1)

where ωbi is the angular velocity of Sb with respect to Si. Note that the subscripts for

denoting the CCS in which the vectors are represented are omitted here. In fact, this

equation is valid for vectors represented in any CCS.

Note that the Sb-representation of the vector product ~a × ~b can be rewritten as the

matrix multiplication [ab×] bb, where

[ab×] =


0 −a3 a2

a3 0 −a1

−a2 a1 0

 , (A.2)

with ab = [ a1 a2 a3
]′.

To complete the preliminary definitions, it is useful to present the strapdown equation,

which relates the time-derivative of the attitude matrix Drb with the angular velocity ωbr.

Such equation is just a form of representing the kinematic attitude model. Mathematically,

it is given by (WERTZ, 1978)

Ḋ
rb

= −
[
ωbi×

]
Drb. (A.3)
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A.2 System Modeling

The present section aims at developing the dynamic and measurement models of the

satellite illustrated in Figure A.2. These models are used for simulation and design pur-

poses in Chapter 5. The vehicle illustrated here consists of a cubic rigid-body satellite. It

can be controlled by three identical reaction wheels mounted in an aligned fashion with

respect to the axes of Sb. They are labeled by RWx, RWy, and RWz. In order to be

capable of estimating the attitude and angular velocity, the satellite is also supposed to

be equipped with a triad of rate gyros (TGx, TGy, and TGz), a triad of magnetome-

ters (TMx, TMy, and TMz), and six two-axis solar sensors (SS1, ..., SS6), one on each

satellite face. All the sensors are assumed to provide measurements corresponding to

Sb-representations.

FIGURE A.2 – A cubic rigid-body satellite and its sensors and actuators.
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A.2.1 Satellite attitude dynamics

The Sb-representation of the Euler’s moment equation for the satellite depicted in

Figure A.2 is given by

Mb = Ḣb +
[
ωbib ×

]
Hb, (A.4)

where Mb represents the external torque acting on the satellite about its CM, Hb is the

total angular momentum (of the satellite and the reaction wheels) also about CM, and

ωbib corresponds to the inertial angular velocity of the satellite body. The total angular

momentum is given by

Hb = sHb + wHb, (A.5)

where sHb is the angular momentum of the satellite body, which is given by sHb = Jsω
bi
b ,

where Js is the satellite inertia matrix with respect to the Sb axes. On the other hand,

wHb represents the angular momentum of the wheels. It is given by wHb = IwI3ω
wi
b ,

where Iw is the moment of inertia of each wheel about its rotation axis, and ωwib is such

that its components correspond to the inertial angular velocities of the wheels. It follows

that ωwib = ωwbb + ωbib . Therefore, by taking into consideration the above definitions

and replacing equation (A.5) into (A.4), it results

Mb − IwI3ω̇
wb
b = (Js + IwI3)ω̇bib +

[
ωbib ×

] {
(Js + IsI3)ωbib + IwI3ω

wb
b

}
. (A.6)

Since the goal is to describe the attitude motion of Sb with respect to Sr, the angular

velocity ωbrb has to appear in place of ωbib in equation (A.6). This is accomplished by just

making ωbib = ωbrb + ωrib , where ωrib = Drbωrir . Note that Drb represents the attitude of

the satellite. The quantity ωrir represents the inertial angular velocity of the reference
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CCS, which is assumed to be known. Using the above considerations, equation (A.6) can

be rewritten as

Mb − IwI3ω̇
wb
b = (Js + IwI3)

(
ω̇brb + Ḋ

rb
ωrir + Drb b

ωr
ri
)

+ ...

...+
[(
ωbrb + Drbωrir

)
×
] {

(Js + IwI3)
(
ωbrb + Drbωrir

)
+ IwI3ω

wb
b

}
. (A.7)

Now, by using equations (A.1) and (A.3), noting that Dbr =
(
Drb
)′

, and defining the

control torque cτ , IwI3ω̇
wb
b , the above equation can be rewritten as

Mb − cτ = (Js + IwI3)
(
ω̇brb −

[
ωbrb ×

]
Drbωrir + Drb

(
ω̇rir +

[
ωrir ×

] (
Drb
)′
ωbrb

))
+ ...

...+
[(
ωbrb + Drbωrir

)
×
] {

(Js + IwI3)
(
ωbrb + Drbωrir

)
+ IwI3ω

wb
b

}
. (A.8)

The actuation provided by the reaction wheels is explained by the principle of conser-

vation of the total angular momentum (GOLDSTEIN, 2002). There is no other actuator

being taken into account in the satellite depicted in Figure A.2. Therefore, in the present

application, the external torque term, Mb, consists only of perturbation torques. In the

sequel, two types of perturbation torques are considered: the gravity-gradient torque,

ggMb, and the residual magnetic torque, mgMb. Such perturbations are relevant when

dealing with low-Earth orbits (WERTZ, 1978). Mathematically,

Mb = ggMb + mgMb. (A.9)
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The gravity-gradient torque is produced by the differences in the magnitude of the

Earth’s gravitational field along the satellite body. It is usually approximated by the

following expression (WERTZ, 1978):

ggMb
∼=

3µ

‖rr‖3

[(
Drbr̂r

)
×
]

(Js + IwI3) Drbr̂r, (A.10)

where rr is the Sr-representation of the satellite position vector with respect to the center

of the Earth, r̂r is the unitary vector in the direction of rr, and µ is the Earth gravitational

constant.

The residual magnetic perturbation torque emerges from the interaction between the

geomagnetic field and the satellite residual magnetic field due to its onboard electronics.

It is given by (WERTZ, 1978)

mgMb = [δmb×] Drbbr, (A.11)

where δmb is the residual magnetic dipole moment represented in Sb, and br is the Sr-

representation of the geomagnetic flux density at the satellite current position. Therefore,

by substituting (A.10) and (A.11) into (A.9), and replacing the resulting expression in

(A.8), one finally obtains the nonlinear attitude dynamic equation:

ω̇brb = (Js + IwI3)−1 3µ

‖rr‖3

[(
Drbr̂r

)
×
]

(Js + IwI3) Drbr̂r+(Js + IwI3)−1 [δmb×] Drbbr+...

...− (Js + IwI3)−1 [(ωbrb + Drbωrir
)
×
] (

(Js + IwI3)
(
ωbrb + Drbωrir

)
+ IwI3ω

wb
b

)
+ ...
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...+
[
ωbrb ×

]
Drbωrir −Drbω̇rir −Drb

[
ωrir ×

] (
Drb
)′
ωbrb − (Js + IwI3)−1 cτ , (A.12)

which corresponds to a system of three coupled nonlinear first-order differential equations.

In order to complete the description of the attitude motion, it remains to write the kine-

matic equation, relating the time derivatives of the MRP prb ∈ R3 (which parameterizes

Drb) with ωbrb . It is given by (SHUSTER, 1993)

ṗrb =
1

4

{(
1−

∥∥prb∥∥2
)

I3 + 2
[
prb×

]
+ 2prb

(
prb
)′}

ωbrb , (A.13)

and the relationship between the attitude matrix Drb and the MRP prb is

Drb , D
(
prb
)

= I3 +
4(

1 + ‖prb‖2
)2

{
2
[
prb×

]2 − (1−
∥∥prb∥∥2

) [
prb×

]}
. (A.14)

Equations (A.12)-(A.13) completely describe the dynamics of the attitude motion of

the satellite depicted in Figure A.2 when it is subject to disturbance torques due to

gravity-gradient and residual magnetism.

A.2.2 Measurement models

Consider that the magnetometers, the solar sensors, and the rate gyros provide mea-

surements of the Sb-representations, respectively, of the geomagnetic flux density, bb, the

unit vector pointing towards the Sun, sb, and the inertial angular velocity of Sb, ωb. More-

over, assume that the corresponding Sr-representations, br, sr, and ωr can be computed

by using available reference models. Therefore, one can immediately write the following
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expressions:

bb = D
(
prb
)
br , (A.15)

sb = D
(
prb
)
sr , (A.16)

and

ωb = ωbrb + ωrib = ωbrb + D
(
prb
)
ωrir , (A.17)

where the true attitude matrix, D
(
prb
)
, is given by equation (A.14). Note that, in

equations (A.15)-(A.16), the true Sr-representations, br and sr, are simply transformed

into the corresponding Sb-representations, bb and sb, respectively. Equation (A.17) is just

a slightly modified expression of the Sb-representation of the inertial angular velocity of

Sb.

A.3 Linearized state-space model

For the purpose of designing the linear fault-tolerant control scheme of Chapter 5, it is

necessary to derive discrete-time linearized approximations of the nonlinear continuous-

time models presented in the previous section. Note that the coordinate system Sr has

not been specified thus far. Therefore, the above equations are valid for any reference

CCS centered at the CM of the satellite.

Now, in order to derive the linearized equations, define Sr to be parallel to Si. Hence,

Dri = I3, ωrir = 0, ω̇rir = 0, and r̂r = r̂i. Define the continuous-time state vector as

x(t) ,
[(

prb
)′
,
(
ωbrb
)′]′

, the continuous-time control input vector as u(t) , cτ , and the

reference state as x̄ , 06×1. Additionally, let the inertia matrix Js be diagonal and define
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the notations Js , diag (Ix, Iy, Iz), δmb , [ δmbx δmby δmbz
]′, br , [ brx bry brz ]′,

and r̂r , [ r̂rx r̂ry r̂rz ]′. Therefore, by truncating the Taylor series expansions of the

nonlinearities appearing in equations (A.12)-(A.13) about the reference point x̄, a linear

continuous-time deterministic state equation,

ẋ(t) = A(t)x(t) + Bu(t), (A.18)

is obtained, where

A(t) =

 03×3
1
4
I3

A21

[
IwI3ω

wb
b ×

]
 , (A.19)

B =

 03×3

−B2

 , (A.20)

B2 = diag
{

(Ix + Iw)−1 , (Iy + Iw)−1 , (Iz + Iw)−1} (A.21)

and

A21 =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (A.22)

with

a11 ,
3µ(Iz − Iy)
‖ri‖3 (Ix + Iw)

(4r̂2
rz − 4r̂2

ry)−
4δmbz

Ix + wI
brz − 4

δmby

Ix + wI
bry, (A.23)

a12 ,
12µ(Iz − Iy)
‖ri‖3 (Ix + Iw)

r̂rxr̂ry +
4δmby

Ix + Iw
brx, (A.24)
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a13 ,
−12µ(Iz − Iy)
‖ri‖3 (Ix + Iw)

r̂rz r̂rx +
4δmbz

Ix + Iw
brx, (A.25)

a21 ,
−12µ(Ix − Iz)
‖ri‖3 (Iy + Iw)

r̂rxr̂ry +
4δmbx

Iy + Iw
bry, (A.26)

a22 ,
3µ(Ix − Iz)
‖ri‖3 (Iy + Iw)

(−4r̂2
rz + 4r̂2

rx)−
4δmbz

Iy + Iw
brz −

4δmbx

Iy + Iw
brx, (A.27)

a23 ,
12µ(Ix − Iz)
‖ri‖3 (Iy + Iw)

r̂rz r̂ry +
4δmbz

Iy + Iw
bry, (A.28)

a31 ,
12µ(Iy − Ix)
‖ri‖3 (Iz + Iw)

r̂rz r̂rx +
4δmbx

Iz + Iw
brz, (A.29)

a32 ,
−12µ(Iy − Ix)
‖ri‖3 (Iz + Iw)

r̂rz r̂ry +
4δmby

Iz + Iw
brz, (A.30)

a33 ,
3µ(Iy − Ix)
‖ri‖3 (Iz + Iw)

(4r̂2
ry − 4r̂2

rx)−
4δmby

Iz + Iw
bry −

4δmbx

Iz + Iw
brx. (A.31)

Now, consider the nonlinear measurement equations (A.15)-(A.17). In order to lin-

earize them about x̄, first let the quadratic functions of prb appearing in equation (A.14)

equal to zero. This procedure yields

Drb ∼= I3 − 4
[
prb×

]
. (A.32)
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Therefore, by noting that ωrir = 0, equations (A.15)-(A.16) become

bb ∼= br + 4 [br×] prb, (A.33)

sb ∼= sr + 4 [sr×] prb, (A.34)

ωb = ωbrb . (A.35)

To cast the above measurement models into the standard form of linear state-space rep-

resentations, let the observation vector be y , [(bb − br)
′, (sb − sr)

′,ω′b]
′. Hence, the

measurement equation becomes

y(t) = C(t)x(t), (A.36)

with

C(t) =


4 [br×] 03×3

4 [sr×] 03×3

03×3 I3

 . (A.37)

A.4 Discretized state-space model

For the purpose of discretizing equation (A.18), assume that, between consecutive

sampling instants, A(t) and u(t) are approximately constant. Particularly, denote two

arbitrary consecutive sampling instants by tk and tk+1. Hence, for t ∈ [tk, tk+1), one can

write A(t) = A(tk) and u(t) = u(tk). In this context, given x(tk), the solution of the



APPENDIX A. SATELLITE ATTITUDE DYNAMICS 129

differential equation (A.18) at instant tk+1 is [see (KUO; GOLNARAGHI, 2003), p.143]

x(tk+1) = exp {A(tk)× (tk+1 − tk)}xk +

∫ tk+1

tk

exp {A(tk)× (tk+1 − τ)}Bu(tk)dτ ,

(A.38)

which can be rewritten as

xk+1 = Akxk + Bkuk (A.39)

where xk , x(tk), uk , u(tk),

Ak , exp {A(tk)× (tk+1 − tk)} , (A.40)

and

Bk ,
∫ tk+1

tk

exp {A(tk)× (tk+1 − τ)} dτB. (A.41)

Finally, by solving the integral over τ , equation (A.41) can be rewritten as

Bk = A(tk)
−1 (Ak − I6) B. (A.42)

Since the continuous-time measurement model (A.36) is an algebraic equation, a cor-

responding discrete-time model can immediately be obtained as

yk = Ckxk, (A.43)

where yk , y(tk) and Ck , C(tk).

In summary, equations (A.39) and (A.43) constitute a deterministic discrete-time lin-

earized state-space model for the system under consideration. In this work, a sample
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period of T , tk+1 − tk = 1 s is adopted.
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