MP-282

Dynamic Modeling and Control of Multirotor Aerial Vehicles Syllabus

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

> São José dos Campos - SP 2020

Contents

1 Practical Info

2 Objectives

Official program

4 Chronogram

5 Methodology

• Prof. Davi Antônio dos Santos

E-mail	davists@ita.br
Homepage	www.professordavisantos.com
Office	1324
Lab	www.lra.ita.br

Objectives

MP-282 has been devised to teach:

- how to describe the dynamics of different kinds of MAVs
 - with fixed or tilting rotors
 - tether-constrained or free
 - connected to an aerostatic balloon
- how to design flight control, guidance, and path planning algorithms
 - hierarchical control scheme
 - position and attitude control
 - control allocation
 - waypoint-based guidance
 - path planning

Official Program (3-0-0-9, maximum 3 credits)

- Introduction: modeling; control allocation; attitude and position control; reference governor; trajectory planning; and path planning.
- Kinematics and dynamics: coordinate systems; translational motion; attitude motion; attitude parameterizations; tether-constrained flight.
- Control force and torque and control allocation: quadcopter; hexacopter; octacopter; quadcopter with longitudinal tilting rotors; quadcopter with transversal tilting rotors.
- Introduction to flight control: attitude control; position control; reference governor.
- Other control methods: sliding mode control; model predictive control.

The course plan is as follows.

- Month 1: Introduction and Dynamic Modeling
 - Introduction
 - Coordinate systems, equations of motion, attitude parameterizations
 - Dynamic modeling of tethered MAVs
 - Dynamic modeling of MAVs connected to aerostatic balloons
 - Resulting control forces and torques
- Month 2: Flight Control of Fixed-Rotor MAVs
 - Hierarchical control structure
 - Attitude and position control
 - Control allocation

• Month 3: Guidance and Path Planning

- Waypoint-based guidance
- Path planning

• Month 4: More on Control Methods and Simulation

- Geometric control
- Sliding mode control
- Hardware-in-the-loop simulation
- etc.

- Lectures and discussions using slides and board
- Lab demonstrations (hardware-in-the-loop simulation)
- Simulations (exercises starting in the class and going on at home)
- Theoretical exercises (homework)

Evaluation

• Grade 1:

exam 1	50 %
simulation	25 %
exercises	25 %

• Grade 2:

exam 2	50 %
simulation	25 %
exercises	25 %

• Final grade:

simulation-based work + draft paper 100 %

Bibliography

- NONAMI, K.; KENDOUL, F.; SUZUKI, S.; WANG, W.; NAKAZAWA, D. Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles London: Springer, 2010.
- MARKLEY, F. L.; CRASSIDIS, J. L. Fundamentals of Spacecraft Attitude Determination and Control. Springer, 2014.
- SLOTINE, J.J.E.; LI, W. **Applied Nonlinear Control.** New Jersey: Prentice-Hall, 1991.
- MACIEJOWSKI, J. M. **Predictive Control with Constraints.** Harlow: Pearson, 2002.
- BORELLI, F.; BEMPORADI, A.; MORARI, M. Predictive Control for Linear and Hybrid Systems. New York: Cambridge University Press, 2017.

