MP-282

Dynamic Modeling and Control of Multirotor Aerial Vehicles Chapter 3: Resulting Control Efforts

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

> São José dos Campos - SP 2020

Contents

- Notation and Concepts
- 2 Quadcopter Q+
- 3 Quadcopter QX
- 4 Hexacopter
- 5 Octacopter
- 6 Tricopter with double rotors
 - Quadcopter with double rotors
- 8 Quadcopter with longitudinal-vectoring rotors
 - Quadcopter with transversal-vectoring rotors
- 10 Hexacopter with two vectoring rotors
- Birotor on a 2-DOF guimbal

Notation and Concepts ...

Notation and Concepts

Diagram of Control Efforts

- $\omega_i, \forall i$: angular speed of rotor i
- $\overrightarrow{f}_i, \forall i$: thurst provided by rotor *i*
- *¬*_i, ∀i: reaction torque provided by rotor i (contrary to ω_i)
 *¬*_i: rotor-CM arm

Notation and Concepts

Control Efforts for an Arbitrary MAV

Resulting Control Force:

$$\overrightarrow{F}^{c} = \sum_{i=1}^{n_{r}} \overrightarrow{f}_{i}$$
(1)

where n_r is the number of rotors.

Resulting Control Torque:

$$\overrightarrow{T}^{c} = \sum_{i=1}^{n_{r}} \overrightarrow{\tau}_{i} + \sum_{i=1}^{n_{r}} \overrightarrow{I}_{i} \times \overrightarrow{f}_{i}$$
(2)

The first sum in (2) corresponds to the moments of the reaction forces, while the second one represents the moments of the thrust forces.

Relation Between Reaction Torque and Thrust

In Chapter 2, we described the magnitude of the reaction torque and thurst force of a rotor by

$$f_i = k_f \ \omega_i^2 \tag{3}$$

$$\tau_i = k_\tau \; \omega_i^2 \tag{4}$$

for $i = 1, ..., n_r$.

Dividing (4) by (3), we find $\tau_i = kf_i$, with

$$k \triangleq \frac{k_{\tau}}{k_f} \tag{5}$$

The parameter $k \in \mathbb{R}$ will be useful in this chapter.

$\mathsf{Quadcopter} \ \mathsf{Q} + \dots$

Diagram of Control Efforts

Legend: *I*: arm length

Resulting Control Efforts

Resulting force magnitude F^c and resulting torque $\mathbf{T}_{\mathrm{B}}^c$ in \mathcal{S}_{B} :

$$\begin{bmatrix} F^{c} \\ \mathbf{T}_{B}^{c} \end{bmatrix} = \mathbf{\Gamma}_{Q+} \mathbf{f}$$
(6)

where $\boldsymbol{f} \triangleq [\mathit{f}_1 \ \mathit{f}_2 \ \ldots \ \mathit{f}_4]^{\mathrm{T}}$ and

$$m{\Gamma}_{
m Q+} riangleq \left[egin{array}{cccccc} 1 & 1 & 1 & 1 \ 0 & -l & 0 & l \ -l & 0 & l & 0 \ k & -k & k & -k \end{array}
ight]$$

(7)

Proof: on the whiteboard.

Quadcopter QX ...

Quadcopter QX

Diagram of Control Efforts

Legend: *I*: arm length δ : (half) frontal separation angle

Resulting Control Efforts

Resulting force magnitude F^c and resulting torque $\mathbf{T}_{\mathrm{B}}^c$ in \mathcal{S}_{B} :

$$\begin{bmatrix} F^{c} \\ \mathbf{T}_{B}^{c} \end{bmatrix} = \mathbf{\Gamma}_{QX} \mathbf{f}$$
(8)

where $\boldsymbol{f} \triangleq [\mathit{f}_1 \ \mathit{f}_2 \ \ldots \ \mathit{f}_4]^{\mathrm{T}}$ and

$$\mathbf{\Gamma}_{\mathrm{QX}} \triangleq \begin{bmatrix} 1 & 1 & 1 & 1 \\ /\sin\delta & -/\sin\delta & -/\sin\delta & /\sin\delta \\ -/\cos\delta & -/\cos\delta & /\cos\delta & /\cos\delta \\ k & -k & k & -k \end{bmatrix}$$

Proof: on the whiteboard.

(9)

Hexacopter ...

Hexacopter

Diagram of Control Efforts

Legend: *I*: arm length δ : (half) frontal separation angle

Resulting Control Efforts

Resulting force magnitude F^c and resulting torque $\mathbf{T}_{\mathrm{B}}^c$ in \mathcal{S}_{B} :

$$\begin{bmatrix} \mathbf{F}^{c} \\ \mathbf{T}_{B}^{c} \end{bmatrix} = \mathbf{\Gamma}_{H} \mathbf{f}$$
(10)

where $\mathbf{f} \triangleq [f_1 \ f_2 \ \dots \ f_6]^{\mathrm{T}}$ and

$$\mathbf{\Gamma}_{\rm H} \triangleq \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ /\sin\delta & -/\sin\delta & -/ & -/\sin\delta & /\sin\delta & / \\ -/\cos\delta & -/\cos\delta & 0 & /\cos\delta & /\cos\delta & 0 \\ k & -k & k & -k & k & -k \end{bmatrix}$$
(11)

Proof: on the whiteboard.

Octacopter ...

Octacopter

Diagram of Control Efforts

Legend: *I*: arm length δ : frontal separation angle

Octacopter

Resulting Control Efforts

Resulting force magnitude F^c and resulting torque $\mathbf{T}_{\mathrm{B}}^c$ in \mathcal{S}_{B} :

$$\begin{bmatrix} F^{c} \\ \mathbf{T}_{\rm B}^{c} \end{bmatrix} = \mathbf{\Gamma}_{\rm O} \mathbf{f}$$
(12)

where $\mathbf{f} \triangleq [f_1 \ f_2 \ ... \ f_8]^{\mathrm{T}}$ and

$$\mathbf{\Gamma}_{\mathrm{O}} \triangleq \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & -/\sin\delta & -/ & -/\sin\delta & 0 & /\sin\delta & / & /\sin\delta \\ -/ & -/\cos\delta & 0 & /\cos\delta & / & /\cos\delta & 0 & -/\cos\delta \\ k & -k & k & -k & k & -k & k & -k \end{bmatrix}$$
(13)

Proof: left as an exercise.

Tricopter with double rotors ...

Diagram of Control Efforts

Legend: *I*: arm length δ : (half) frontal separation angle

Resulting Control Efforts

Resulting force magnitude F^c and resulting torque $\mathbf{T}_{\mathrm{B}}^c$ in \mathcal{S}_{B} :

$$\begin{bmatrix} F^{c} \\ \mathbf{T}_{B}^{c} \end{bmatrix} = \mathbf{\Gamma}_{Y6} \mathbf{f}$$
(14)

where $\mathbf{f} \triangleq [f_1 \ f_2 \ \dots \ f_6]^{\mathrm{T}}$ and

$$\Gamma_{Y6} \triangleq \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ /\sin\delta & /\sin\delta & -/\sin\delta & -/\sin\delta & 0 & 0 \\ -/\cos\delta & -/\cos\delta & -/\cos\delta & -/\cos\delta & / & / \\ k & -k & k & -k & k & -k \end{bmatrix}$$
(15)

Proof: on the whiteboard.

Quadcopter with double rotors ...

Quadcopter X8

Diagram of Control Efforts

Legend: *I*: arm length δ : (half) frontal separation angle

Quadcopter X8

Resulting Control Efforts

Resulting force magnitude F^c and resulting torque $\mathbf{T}_{\mathrm{B}}^c$ in \mathcal{S}_{B} :

$$\begin{bmatrix} F^{c} \\ \mathbf{T}_{B}^{c} \end{bmatrix} = \mathbf{\Gamma}_{X8} \mathbf{f}$$
(16)

where $\mathbf{f} \triangleq [f_1 \ f_2 \ ... \ f_8]^{\mathrm{T}}$, $\mathrm{s} \equiv \sin$, $\mathrm{c} \equiv \cos$, and

$$\mathbf{\Gamma}_{X8} \triangleq \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ l_{S\delta} & l_{S\delta} & -l_{S\delta} & -l_{S\delta} & -l_{S\delta} & -l_{S\delta} & l_{S\delta} \\ -l_{c\delta} & -l_{c\delta} & -l_{c\delta} & -l_{c\delta} & l_{c\delta} & l_{c\delta} & l_{c\delta} \\ k & -k & k & -k & k & -k & k & -k \end{bmatrix}$$
(17)

Proof: left as an exercise.

Quadcopter with longitudinal-vectoring rotors ...

Quadcopter with longitudinal-vectoring rotors

Diagram of Control Efforts

Legend: *I*: arm length β_i : vectoring angles

Quadcopter with longitudinal-vectoring rotors

Resulting Control Efforts

Resulting force components F_1^c , F_3^c and resulting torque $\mathbf{T}_{\mathrm{B}}^c$ in \mathcal{S}_{B} :

$$\begin{bmatrix} F_1^c \\ F_3^c \\ \mathbf{T}_B^c \end{bmatrix} = \mathbf{\Gamma}_{\mathrm{LV4}}(\beta_1, ..., \beta_4) \mathbf{f}$$
(18)

where $\mathbf{f} \triangleq [f_1 \ f_2 \ ... \ f_4]^{\mathrm{T}}$, $\mathrm{s} \equiv \sin$, $\mathrm{c} \equiv \cos$, and

$$\Gamma_{\mathrm{LV4}} \triangleq \begin{bmatrix} \mathrm{s}\beta_1 & \mathrm{s}\beta_2 & \mathrm{s}\beta_3 & \mathrm{s}\beta_4 \\ \mathrm{c}\beta_1 & \mathrm{c}\beta_2 & \mathrm{c}\beta_3 & \mathrm{c}\beta_4 \\ l\mathrm{c}\beta_1 + k\mathrm{s}\beta_1 & -l\mathrm{c}\beta_2 - k\mathrm{s}\beta_2 & -l\mathrm{c}\beta_3 + k\mathrm{s}\beta_3 & l\mathrm{c}\beta_4 - k\mathrm{s}\beta_4 \\ -l\mathrm{c}\beta_1 & -l\mathrm{c}\beta_2 & l\mathrm{c}\beta_3 & l\mathrm{c}\beta_4 \\ -l\mathrm{s}\beta_1 + k\mathrm{c}\beta_1 & l\mathrm{s}\beta_2 - k\mathrm{c}\beta_2 & l\mathrm{s}\beta_3 + k\mathrm{c}\beta_3 & -l\mathrm{s}\beta_4 - k\mathrm{c}\beta_4 \end{bmatrix}$$

Proof: on the whiteboard.

Quadcopter with transversal-vectoring rotors ...

Quadcopter with transversal-vectoring rotors

Diagram of Control Efforts

Legend: *I*: arm length β_i : vectoring angles

Quadcopter with transversal-vectoring rotors

Resulting Control Efforts

Resulting force $\textbf{F}_{\rm B}^{c}$ and resulting torque $\textbf{T}_{\rm B}^{c}$ in $\mathcal{S}_{\rm B}$:

$$\begin{bmatrix} \mathbf{F}_{\mathrm{B}}^{c} \\ \mathbf{T}_{\mathrm{B}}^{c} \end{bmatrix} = \mathbf{\Gamma}_{\mathrm{TV4}}(\beta_{1}, ..., \beta_{4})\mathbf{f}$$
(19)

where $\mathbf{f} \triangleq [f_1 \ f_2 \ \dots \ f_4]^{\mathrm{T}}$, $\mathrm{s} \equiv \sin$, $\mathrm{c} \equiv \cos$, and

$$\Gamma_{\rm TV4} \triangleq \left[\begin{array}{cccccc} 0 & -{\rm s}\beta_2 & 0 & {\rm s}\beta_4 \\ -{\rm s}\beta_1 & 0 & {\rm s}\beta_3 & 0 \\ {\rm c}\beta_1 & {\rm c}\beta_2 & {\rm c}\beta_3 & {\rm c}\beta_4 \\ 0 & k{\rm s}\beta_2 - l{\rm c}\beta_2 & 0 & -k{\rm s}\beta_4 + l{\rm c}\beta_4 \\ -k{\rm s}\beta_1 - l{\rm c}\beta_1 & 0 & k{\rm s}\beta_3 + l{\rm c}\beta_3 & 0 \\ k{\rm c}\beta_1 - l{\rm s}\beta_1 & -k{\rm c}\beta_2 - l{\rm s}\beta_2 & k{\rm c}\beta_3 - l{\rm s}\beta_3 & -k{\rm c}\beta_4 - l{\rm s}\beta_4 \end{array} \right]$$

Proof: left as an exercise.

Hexacopter with two vectoring rotors ...

Hexacopter with two vectoring rotors

Diagram of Control Efforts

Homework: Obtain the \mathcal{S}_{B} representation of the control efforts.

Birotor on a 2-DOF gimbal ...

Birotor on a 2-DOF guimbal

Diagram of Control Efforts

Homework: Obtain the \mathcal{S}_{B} representation of the control efforts.

Thanks!