Dynamic Modeling and Control of Multirotor Aerial Vehicles Chapter 4: Rotational Motion

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

São José dos Campos - SP 2020

Contents

(1) Coordinate Systems
(2) Attitude Representations
(3) Attitude Kinematics
(4) Attitude Dynamics

Coordinate Systems ...

Coordinate Systems

In this section, we consider the body $\operatorname{CCS} \mathcal{S}_{\mathrm{B}} \triangleq\left\{B ; \hat{x}_{\mathrm{B}}, \hat{y}_{\mathrm{B}}, \hat{z}_{\mathrm{B}}\right\}$ and the reference CCS $\mathcal{S}_{R} \triangleq\left\{R ; \hat{x}_{R}, \hat{y}_{R}, \hat{z}_{R}\right\}$, where $R \equiv B \equiv \mathrm{CM}$ and \mathcal{S}_{R} is parallel to \mathcal{S}_{G}.

Attitude Representations ...

Attitude Representations

How to represent the attitude of \mathcal{S}_{B} with respect to (w.r.t.) \mathcal{S}_{R} ?

Attitude Representations

Attitude Matrix

Attitude Matrix

By writting the versors of \mathcal{S}_{B} in terms of the versors of \mathcal{S}_{R}, we obtain:

$$
\begin{aligned}
\hat{x}_{\mathrm{B}} & =C_{x x} \hat{x}_{R}+C_{\mathrm{xy}} \hat{y}_{R}+C_{x z} \hat{z}_{R} \\
\hat{y}_{\mathrm{B}} & =C_{y x} \hat{x}_{R}+C_{\mathrm{yy}} \hat{y}_{R}+C_{y z} \hat{z}_{R} \\
\hat{z}_{\mathrm{B}} & =C_{z x} \hat{x}_{R}+C_{\mathrm{zy}} \hat{y}_{R}+C_{z z} \hat{z}_{R}
\end{aligned}
$$

where $C_{i j} \triangleq \cos \angle\left(\hat{i}_{\mathrm{B}}, \hat{j}_{\mathrm{R}}\right)$, for $i, j \in\{x, y, z\}$, are direction cosines.

Conclusion: The direction cosines $C_{i j}$ completely describe the attitude of \mathcal{S}_{B} with respect to \mathcal{S}_{R}.

Attitude Representations

Attitude Matrix

Therefore, the attitude of \mathcal{S}_{B} with respect to \mathcal{S}_{R} can be represented by the so-called attitude matrix:

$$
\mathbf{D}^{\mathrm{B} / \mathrm{R}} \triangleq\left[\begin{array}{lll}
C_{x x} & C_{x y} & C_{x z} \\
C_{y x} & C_{y y} & C_{y z} \\
C_{z x} & C_{z y} & C_{z z}
\end{array}\right]
$$

which in the literature is also called:

- Direction Cosine Matrix (DCM)
- Rotation Matrix

Attitude Representations

Attitude Matrix

Properties:

1. Transformation of representations

Consider an arbitrary geometric vector \vec{v}. Its algebraic representations \mathbf{v}_{B} and \mathbf{v}_{R} are related by

$$
\mathbf{v}_{\mathrm{B}}=\mathbf{D}^{\mathrm{B} / \mathrm{R}} \mathbf{v}_{\mathrm{R}} \text { or } \mathbf{v}_{\mathrm{R}}=\left(\mathbf{D}^{\mathrm{B} / \mathrm{R}}\right)^{-1} \mathbf{v}_{\mathrm{B}}
$$

For the sake of consistency, $\left(\mathbf{D}^{\mathrm{B} / \mathrm{R}}\right)^{-1} \equiv \mathbf{D}^{\mathrm{R} / \mathrm{B}}$.

Attitude Representations

Attitude Matrix

2. Successive Rotations

Consider the following rotations and the respective representations:

- from \mathcal{S}_{A} to $\mathcal{S}_{\mathrm{C}}: \mathbf{D}^{\mathrm{C} / \mathrm{A}}$
- from \mathcal{S}_{A} to $\mathcal{S}_{\mathrm{B}}: \mathbf{D}^{\mathrm{B} / \mathrm{A}}$
- from \mathcal{S}_{B} to $\mathcal{S}_{\mathrm{C}}: \mathbf{D}^{\mathrm{C} / \mathrm{B}}$

We can show that (see reference [1]):

$$
\mathbf{D}^{\mathrm{C} / \mathrm{A}}=\mathbf{D}^{\mathrm{C} / \mathrm{B}} \mathbf{D}^{\mathrm{B} / \mathrm{A}}
$$

Attitude Representations

Attitude Matrix

3. Orthonormality

The attitude matrix $\mathbf{D}^{B / R}$ is said to be orthonormal because its columns (or rows) are orthogonal to one another and have unit norm, i.e.,

$$
\left(\mathbf{D}^{\mathrm{B} / \mathrm{R}}\right)^{\mathrm{T}} \mathbf{D}^{\mathrm{B} / \mathrm{R}}=\mathbf{I}_{3}
$$

It implies in:

- $\left(\mathbf{D}^{\mathrm{B} / \mathrm{R}}\right)^{-1}=\left(\mathbf{D}^{\mathrm{B} / \mathrm{R}}\right)^{\mathrm{T}}$
- $\operatorname{det}\left(\mathbf{D}^{\mathrm{B} / \mathrm{R}}\right)=1$
i.e., $\mathbf{D}^{\mathrm{B} / \mathrm{R}} \in \mathrm{SO}(3)$, where $\mathrm{SO}(3)$ denotes the Special Orthogonal Group [1].

Attitude Representations

Axis-Angle

Principal (Euler) Axis-Angle

Euler Theorem:
The general angular displacement of a rigid body with a fixed point can be described by a single rotation angle φ around an axis â passing through that point.

Attitude Representations

Axis-Angle

Therefore, the attitude of \mathcal{S}_{B} w.r.t. \mathcal{S}_{R} can be represented by the pair:

(φ, \mathbf{a})

where $\varphi \in \mathbb{R}$ is the principal Euler angle and \mathbf{a} - which is the representation of \hat{a} in any of the two aforementioned CCSs^{1} - is the principal Euler axis.

[^0]
Attitude Representations

Axis-Angle

Relation with the Attitude Matrix:

Given (φ, \mathbf{a}), we obtain $\mathbf{D}^{\mathrm{B} / \mathrm{R}}$ by (see reference [1])

$$
\mathbf{D}^{\mathrm{B} / \mathrm{R}}=\cos \varphi \mathbf{I}_{3}+(1-\cos \varphi) \mathbf{\mathbf { a a } ^ { \mathrm { T } } - \operatorname { s i n } \varphi [\mathbf { a } \times]}
$$

where

$$
[\mathbf{a} \times] \triangleq\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]
$$

Attitude Representations

Axis-Angle

On the other hand, given $\mathbf{D}^{\mathrm{B} / \mathrm{R}}$, we can obtain (φ, \mathbf{a}) by

$$
\varphi=\operatorname{acos} \frac{\operatorname{tr} \mathbf{D}^{\mathrm{B} / \mathrm{R}}-1}{2}
$$

and

- if $\operatorname{tr} \mathbf{D}^{\mathrm{B} / \mathrm{R}}=3$ then \mathbf{a} is indefinite
- if $\operatorname{tr} \mathbf{D}^{B / R}=-1$ then

$$
\begin{array}{cc}
a_{1}= \pm \sqrt{\frac{1+D_{11}}{2}} & a_{2}= \pm \sqrt{\frac{1+D_{22}}{2}} \quad a_{3}= \pm \sqrt{\frac{1+D_{33}}{2}} \\
a_{1} a_{2}=\frac{D_{12}}{2} & a_{2} a_{3}=\frac{D_{23}}{2}
\end{array} \quad a_{3} a_{1}=\frac{D_{31}}{2}
$$

Attitude Representations

Axis-Angle

- if $\operatorname{tr} \mathbf{D}^{\mathrm{B} / \mathrm{R}} \neq-1$ and $\neq 3$ then

$$
a_{1}=\frac{D_{23}-D_{32}}{2 \sin \varphi} \quad a_{2}=\frac{D_{31}-D_{13}}{2 \sin \varphi} \quad a_{3}=\frac{D_{12}-D_{21}}{2 \sin \varphi}
$$

Attitude Representations

Axis-Angle

Remark:

There exists an ambiguity in the axis-angle representation:
(φ, \mathbf{a}) and $(-\varphi,-\mathbf{a})$ represent the same attitude.

Attitude Representations

Quaternion

Euler Parameters (Quaternion)
Definition:

$$
\mathbf{q}=\left[\begin{array}{l}
\varepsilon \\
\eta
\end{array}\right] \in \mathbb{R}^{4}
$$

where $\varepsilon \in \mathbb{R}^{3}$ and $\eta \in \mathbb{R}$ are

$$
\begin{gathered}
\varepsilon \triangleq \mathbf{a} \sin \frac{\varphi}{2} \\
\eta \triangleq \cos \frac{\varphi}{2}
\end{gathered}
$$

Attitude Representations

Quaternion

Properties:

1. Relation with the Attitude Matrix:

Given \mathbf{q}, we obtain $\mathbf{D}^{B / R}$ by

$$
\mathbf{D}^{\mathrm{B} / \mathrm{R}}=\left(\eta^{2}-\varepsilon^{\mathrm{T}} \varepsilon\right) \mathbf{I}_{3}+2 \varepsilon \varepsilon^{\mathrm{T}}-2 \eta[\varepsilon \times]
$$

On the other hand, given $\mathbf{D}^{B / R}$, we can obtain \mathbf{q} by

$$
\begin{aligned}
& \eta= \pm \frac{1}{2} \sqrt{1+\operatorname{tr} \mathbf{D}^{\mathrm{B} / \mathrm{R}}} \\
& \varepsilon=\frac{1}{4 \eta}\left[\begin{array}{l}
D_{23}-D_{32} \\
D_{31}-D_{13} \\
D_{12}-D_{21}
\end{array}\right]
\end{aligned}
$$

Attitude Representations

Quaternion

2. Successive Rotations

Consider the following rotations and the respective representations:

- from \mathcal{S}_{A} to $\mathcal{S}_{\mathrm{C}}: \mathbf{q}^{\mathrm{C} / \mathrm{A}}$
- from \mathcal{S}_{A} to $\mathcal{S}_{\mathrm{B}}: \mathbf{q}^{\mathrm{B} / \mathrm{A}} \triangleq\left(\varepsilon_{1}, \eta_{1}\right)$
- from \mathcal{S}_{B} to $\mathcal{S}_{\mathrm{C}}: \mathbf{q}^{\mathrm{C} / \mathrm{B}} \triangleq\left(\varepsilon_{2}, \eta_{2}\right)$

We can show that:

$$
\mathbf{q}^{\mathrm{C} / \mathrm{A}}=\left[\begin{array}{c}
\eta_{2} \varepsilon_{1}+\eta_{1} \varepsilon_{2}+\left[\varepsilon_{1} \times\right] \varepsilon_{2} \\
\eta_{1} \eta_{2}-\varepsilon_{1}^{\mathrm{T}} \varepsilon_{2}
\end{array}\right]
$$

Attitude Representations

Quaternion

3. Unit Norm

The attitude quaternion \mathbf{q} has unit norm:

$$
\mathbf{q}^{\mathrm{T}} \mathbf{q}=1
$$

i.e., $\mathbf{q} \in \mathbb{S}^{3} \subset \mathbb{R}^{4}$.

[^1]
Attitude Representations

Quaternion

Remark:

There is an ambiguity in the quaternion representation:
\mathbf{q} and $-\mathbf{q}$ represent the same attitude.

Attitude Representations

Gibbs Vector

Gibbs Vector

Definition:

$$
\mathbf{g} \triangleq \mathbf{a} \tan \frac{\varphi}{2}
$$

In the literature, the vector $\mathbf{g} \in \mathbb{R}^{3}$ is also known as

- Rodrigues Parameters
- Euler-Rodrigues Parameters

Attitude Representations

Gibbs Vector

Properties:

1. Relation with the Attitude Matrix:

Given \mathbf{g}, we obtain $\mathbf{D}^{\mathrm{B} / \mathrm{R}}$ by

$$
\mathbf{D}^{\mathrm{B} / \mathrm{R}}=\frac{\left(1-\mathbf{g}^{\mathrm{T}} \mathbf{g}\right) \mathbf{l}_{3}+2 \mathbf{g g}^{\mathrm{T}}-2[\mathbf{g} \times]}{1+\mathbf{g}^{\mathrm{T}} \mathbf{g}}
$$

On the other hand, given $\mathbf{D}^{B / R}$, we obtain \mathbf{g} by

$$
\mathbf{g}=\frac{1}{1+\operatorname{tr} \mathbf{D}^{\mathrm{B} / \mathrm{R}}}\left[\begin{array}{l}
D_{23}-D_{32} \\
D_{31}-D_{13} \\
D_{12}-D_{21}
\end{array}\right]
$$

Attitude Representations

Gibbs Vector

2. Successive Rotations

Consider the following rotations and the respective representations:

- from \mathcal{S}_{A} to $\mathcal{S}_{\mathrm{C}}: \mathbf{g}^{\mathrm{C} / \mathrm{A}}$
- from \mathcal{S}_{A} to $\mathcal{S}_{\mathrm{B}}: \mathbf{g}^{\mathrm{B} / \mathrm{A}} \triangleq \mathbf{g}_{1}$
- from \mathcal{S}_{B} to $\mathcal{S}_{\mathrm{C}}: \mathbf{g}^{\mathrm{C} / \mathrm{B}} \triangleq \mathbf{g}_{2}$

We can show that:

$$
\mathbf{g}^{\mathrm{C} / \mathrm{A}}=\frac{\mathbf{g}_{1}+\mathbf{g}_{2}-\left[\mathbf{g}_{2} \times\right] \mathbf{g}_{1}}{1-\mathbf{g}_{1}^{\mathrm{T}} \mathbf{g}_{2}}
$$

Attitude Representations

Gibbs Vector

Remarks:

- There is no ambiguity in \mathbf{g}.
- There exists a singularity in \mathbf{g} at $\varphi= \pm 180^{\circ}(2 i+1)$, $\forall i$.

Attitude Representations

Euler Angles

Euler Angles

Elemetary Rotations:
They are rotations around the coordinate axes. Denote by $\mathbf{D}_{i}(\varrho)$ the elementary rotation matrix representing the displacement of an angle ϱ around axis i, for $i \in\{1,2,3\}$.

We can show that:

$$
\begin{gathered}
\mathbf{D}_{1}(\varrho)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{c} \varrho & \mathrm{~s} \varrho \\
0 & -\mathrm{s} \varrho & \mathrm{c} \varrho
\end{array}\right] \quad \mathbf{D}_{2}(\varrho)=\left[\begin{array}{ccc}
\mathrm{c} \varrho & 0 & -\mathrm{s} \varrho \\
0 & 1 & 0 \\
\mathrm{~s} \varrho & 0 & \mathrm{c} \varrho
\end{array}\right] \\
\mathbf{D}_{3}(\varrho)=\left[\begin{array}{ccc}
\mathrm{c} \varrho & \mathrm{~s} \varrho & 0 \\
-\mathrm{s} \varrho & \mathrm{c} \varrho & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Attitude Representations

Euler Angles

Three-Dimensional Attitude Representation:
Three-dimensional attitude can be represented by a sequence of three elementary rotation about three consecutively different axes. There are 12 possible sequences:

$$
\begin{aligned}
& 313,212,121,131,323,232 \\
& 123,321,132,312,231,213
\end{aligned}
$$

We will adopt the sequence 123.

Attitude Representations

Euler Angles

Relation with the Attitude Matrix:
Given the Euler angles (123) (ϕ, θ, ψ), we obtain $\mathbf{D}^{\mathrm{B} / \mathrm{R}}$ by

$$
\begin{aligned}
\mathbf{D}^{\mathrm{B} / \mathrm{R}} & =\mathbf{D}_{3}(\psi) \mathbf{D}_{2}(\theta) \mathbf{D}_{1}(\phi) \\
& =\left[\begin{array}{ccc}
\mathrm{c} \psi \mathrm{c} \theta & \mathrm{c} \psi \mathrm{~s} \theta \mathrm{~s} \phi+\mathrm{s} \psi \mathrm{c} \phi & -\mathrm{c} \psi \mathrm{~s} \theta \mathrm{c} \phi+\mathrm{s} \psi \mathbf{s} \phi \\
-\mathrm{s} \psi \mathrm{c} \theta & -\mathrm{s} \psi \mathrm{~s} \theta \mathrm{~s} \phi+\mathrm{c} \psi \mathbf{c} \phi & \mathrm{~s} \psi \mathrm{~s} \theta \mathrm{c} \phi+\mathrm{c} \psi \mathbf{s} \phi \\
\mathrm{~s} \theta & -\mathrm{c} \theta \mathrm{~s} \phi & \mathrm{c} \theta \mathrm{c} \phi
\end{array}\right]
\end{aligned}
$$

Attitude Representations

Euler Angles

On the other hand, given $\mathbf{D}^{\mathrm{B} / \mathrm{R}}=\left[D_{i j}\right]$, we have

$$
\begin{aligned}
\phi & =-\operatorname{atan} \frac{D_{32}}{D_{33}}, \quad 0^{\circ} \leq \phi<360^{\circ} \\
\theta & =\operatorname{asin} D_{31}, \quad-90^{\circ}<\theta<90^{\circ} \\
\psi & =-\operatorname{atan} \frac{D_{21}}{D_{11}}, \quad 0^{\circ} \leq \psi<360^{\circ}
\end{aligned}
$$

Attitude Representations

Euler Angles

Remarks:

- It has no ambiguity.
- For visualization, Euler angles are the best attitude representation, since the alternatives have no obvious physical meaning.
- For simulation, Euler angles are the worst attitude representation, since it has singularity at $\theta=90^{\circ}$ (we are going to see it in the next section) and its kinematics equation is the most nonlinear one.

Attitude Kinematics ...

Attitude Kinematics

Definition

Definition

- Let $\vec{\Omega}^{\mathrm{B} / \mathrm{R}}$ denote the angular velocity of \mathcal{S}_{B} with respect to \mathcal{S}_{R}.
- The attitude Kinematics is the motion of \mathcal{S}_{B} w.r.t. \mathcal{S}_{R} as a function of $\vec{\Omega}^{\mathrm{B} / \mathrm{R}}$.

Attitude Kinematics

Attitude Matrix

Kinematics in Attitude Matrix

One can show that (see reference [2])

$$
\dot{\mathbf{D}}^{\mathrm{B} / \mathrm{R}}=-\left[\boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}} \times\right] \mathbf{D}^{\mathrm{B} / \mathrm{R}}
$$

Attitude Kinematics

Axis-Angle

Kinematics in Axis-Angle

One can show that (see reference [1], p. 24-25)

$$
\begin{gathered}
\dot{\varphi}=\mathbf{a}^{\mathrm{T}} \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}} \\
\dot{\mathbf{a}}=\frac{1}{2}\left([\mathbf{a} \times]-\cot \frac{\varphi}{2}[\mathbf{a} \times][\mathbf{a} \times]\right) \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}}
\end{gathered}
$$

Attitude Kinematics

Quaternion

Kinematics in Quaternion

One can show that

$$
\dot{\mathbf{q}}=\frac{1}{2} \mathbf{W} \mathbf{q}
$$

where

$$
\mathbf{W} \triangleq\left[\begin{array}{cc}
-\left[\boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}} \times\right] & \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}} \\
-\left(\boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}}\right)^{\mathrm{T}} & 0
\end{array}\right]
$$

Attitude Kinematics

Gibbs Vector

Kinematics in Gibbs Vector

One can show that

$$
\dot{\mathbf{g}}=\frac{1}{2}\left(\mathbf{g g}^{\mathrm{T}}+[\mathbf{g} \times]+\mathbf{I}_{3}\right) \Omega_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}}
$$

Attitude Kinematics

Euler Angles

Kinematics in Euler Angles 123

One can show that

$$
\dot{\boldsymbol{\alpha}}=\mathbf{A} \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}}
$$

where $\boldsymbol{\alpha} \triangleq\left[\begin{array}{lll}\phi & \psi\end{array}\right]^{\mathrm{T}}$ and

$$
\mathbf{A} \triangleq\left[\begin{array}{ccc}
\mathrm{c} \psi / \mathrm{c} \theta & -\mathrm{s} \psi / \mathrm{c} \theta & 0 \\
\mathrm{~s} \psi & \mathrm{c} \psi & 0 \\
-\mathrm{c} \psi \mathrm{~s} \theta / \mathrm{c} \theta & \mathrm{~s} \psi \mathrm{~s} \theta / \mathrm{c} \theta & 1
\end{array}\right]
$$

Attitude Dynamics ...

Attitude Dynamics

Definition

Definition

Let \vec{T} denote the total torque acting on the MAV. The attitude dynamics describe the time variation of $\vec{\Omega}^{B / R}$ as a function of \vec{T}.

Attitude Dynamics

A Simple Model

A Simple Model

By assuming that

- The MAV airframe is rigid and has inertia matrix \mathbf{J}_{B} (in \mathcal{S}_{B}).
- The angular momenta of its rotors are negligible.
- $\vec{T}=\vec{T}^{c}+\vec{T}^{d}$, where \vec{T}^{c} is the control torque and \vec{T}^{d} is the disturbance torque.
the MAV's (attitude) dynamic equation is given in \mathcal{S}_{B} by

$$
\dot{\boldsymbol{\Omega}}_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}}=\mathbf{J}_{\mathrm{B}}^{-1}\left[\left(\mathbf{J}_{\mathrm{B}} \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}}\right) \times\right] \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}}+\mathbf{J}_{\mathrm{B}}^{-1}\left(\mathbf{T}_{\mathrm{B}}^{\mathrm{c}}+\mathbf{T}_{\mathrm{B}}^{\mathrm{d}}\right)
$$

References...

References

[1] Hughes, P. C. Spacecraft Attitude Dynamics. Dover, 2004.

- [2] Shuster, M. Survey of Attitude Representations. The Journal of Astronautical Sciences, Vol. 41, No. 4, 1993.

Thanks!

[^0]: ${ }^{1}$ Note that since the rotation of \mathcal{S}_{B} with respect to \mathcal{S}_{R} is strictly around \hat{a}, the representations \mathbf{a}_{B} and \mathbf{a}_{R} are the same. Try to do it with a coordinate axis!

[^1]: ${ }^{2}$ The symbol \mathbb{S}^{3} denotes the 3-Sphere.

