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Instituto Tecnológico de Aeronáutica
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Coordinate Systems

In this section, we consider the body CCS SB , {B; x̂B, ŷB, ẑB} and the
reference CCS SR , {R; x̂R, ŷR, ẑR}, where R ≡ B ≡ CM and SR is
parallel to SG.
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Attitude Representations

How to represent the attitude of SB with respect to (w.r.t.) SR?

 

𝑥 B 

𝑦 B 

𝑧 B 

𝑥 R 

𝑦 R 

𝑧 R 

CM 
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Attitude Representations
Attitude Matrix

Attitude Matrix

By writting the versors of SB in terms of the versors of SR, we obtain:

x̂B = Cxx x̂R + CxyŷR + Cxz ẑR

ŷB = Cyx x̂R + CyyŷR + Cyz ẑR

ẑB = Czx x̂R + CzyŷR + Czz ẑR

 

𝑥 B 

𝑦 B 

𝑧 B 

𝑥 R 

𝑦 R 

𝑧 R 

CM 

∠ 𝑥 B, 𝑥 R  

∠ 𝑥 B, 𝑧 R  

∠ 𝑥 B, 𝑦 R  

where Cij , cos∠(̂iB, ĵR), for i , j ∈ {x , y , z}, are direction cosines.

Conclusion: The direction cosines Cij completely describe the attitude of
SB with respect to SR.
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Attitude Representations
Attitude Matrix

Therefore, the attitude of SB with respect to SR can be represented by the
so-called attitude matrix:

DB/R ,

 Cxx Cxy Cxz

Cyx Cyy Cyz

Czx Czy Czz


which in the literature is also called:

Direction Cosine Matrix (DCM)

Rotation Matrix
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Attitude Representations
Attitude Matrix

Properties:

1. Transformation of representations

Consider an arbitrary geometric vector −→v . Its algebraic representations vB
and vR are related by

vB = DB/RvR or vR =
(

DB/R
)−1

vB

 

𝑥 B 

𝑦 B 

𝑧 B 

𝑥 R 

𝑦 R 

𝑧 R 

CM 

v   

For the sake of consistency,
(

DB/R
)−1
≡ DR/B.
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Attitude Representations
Attitude Matrix

2. Successive Rotations

Consider the following rotations and the respective representations:

from SA to SC: DC/A

from SA to SB: DB/A

from SB to SC: DC/B

 

𝑆A  
𝑆B  

𝑆C  

𝐃B/A 𝐃C/B 

𝐃C/A 

We can show that (see reference [1]):

DC/A = DC/BDB/A
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Attitude Representations
Attitude Matrix

3. Orthonormality

The attitude matrix DB/R is said to be orthonormal because its columns (or
rows) are orthogonal to one another and have unit norm, i.e.,

(
DB/R

)T
DB/R = I3

It implies in:(
DB/R

)−1
=
(

DB/R
)T

det
(

DB/R
)

= 1

i.e., DB/R ∈ SO(3), where SO(3) denotes the Special Orthogonal Group
[1].
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Attitude Representations
Axis-Angle

Principal (Euler) Axis-Angle

Euler Theorem:

The general angular displacement of a rigid body with a fixed point can be
described by a single rotation angle ϕ around an axis â passing through that
point.

 

a  

𝜑 

𝑥 R  

𝑦 R  

𝑦 B  

𝑥 B  

𝑧 R  
𝑧 B  
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Attitude Representations
Axis-Angle

Therefore, the attitude of SB w.r.t. SR can be represented by the pair:

(ϕ, a)

where ϕ ∈ R is the principal Euler angle and a – which is the representation
of â in any of the two aforementioned CCSs1 – is the principal Euler axis.

1Note that since the rotation of SB with respect to SR is strictly around â, the
representations aB and aR are the same. Try to do it with a coordinate axis!
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Attitude Representations
Axis-Angle

Relation with the Attitude Matrix:

Given (ϕ, a), we obtain DB/R by (see reference [1])

DB/R = cosϕI3 + (1− cosϕ)aaT − sinϕ[a×]

where

[a×] ,

 0 −a3 a2
a3 0 −a1
−a2 a1 0


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Attitude Representations
Axis-Angle

On the other hand, given DB/R, we can obtain (ϕ, a) by

ϕ = acos
tr DB/R − 1

2

and

if tr DB/R = 3 then a is indefinite

if tr DB/R = −1 then

a1 = ±
√

1 + D11

2
a2 = ±

√
1 + D22

2
a3 = ±

√
1 + D33

2

a1a2 =
D12

2
a2a3 =

D23

2
a3a1 =

D31

2
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Attitude Representations
Axis-Angle

if tr DB/R 6= −1 and 6= 3 then

a1 =
D23 − D32

2 sinϕ
a2 =

D31 − D13

2 sinϕ
a3 =

D12 − D21

2 sinϕ
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Attitude Representations
Axis-Angle

Remark:

There exists an ambiguity in the axis-angle representation:

(ϕ, a) and (−ϕ,−a) represent the same attitude.
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Attitude Representations
Quaternion

Euler Parameters (Quaternion)

Definition:

q =

[
ε
η

]
∈ R4

where ε ∈ R3 and η ∈ R are

ε , a sin
ϕ

2

η , cos
ϕ

2
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Attitude Representations
Quaternion

Properties:

1. Relation with the Attitude Matrix:

Given q, we obtain DB/R by

DB/R =
(
η2 − εTε

)
I3 + 2εεT − 2η [ε×]

On the other hand, given DB/R, we can obtain q by

η = ±1

2

√
1 + tr DB/R

ε =
1

4η

 D23 − D32

D31 − D13

D12 − D21


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Attitude Representations
Quaternion

2. Successive Rotations

Consider the following rotations and the respective representations:

from SA to SC: qC/A

from SA to SB: qB/A , (ε1, η1)

from SB to SC: qC/B , (ε2, η2)

 

𝑆A  
𝑆B  

𝑆C  

𝐪B/A 𝐪C/B 

𝐪C/A 

We can show that:

qC/A =

[
η2ε1 + η1ε2 + [ε1×] ε2

η1η2 − εT1 ε2

]
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Attitude Representations
Quaternion

3. Unit Norm

The attitude quaternion q has unit norm:

qTq = 1

i.e., q ∈ S3 ⊂ R4 2.

2The symbol S3 denotes the 3-Sphere.
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Attitude Representations
Quaternion

Remark:

There is an ambiguity in the quaternion representation:

q and −q represent the same attitude.
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Attitude Representations
Gibbs Vector

Gibbs Vector

Definition:

g , a tan
ϕ

2

In the literature, the vector g ∈ R3 is also known as

Rodrigues Parameters

Euler-Rodrigues Parameters
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Attitude Representations
Gibbs Vector

Properties:

1. Relation with the Attitude Matrix:

Given g, we obtain DB/R by

DB/R =

(
1− gTg

)
I3 + 2ggT − 2 [g×]

1 + gTg

On the other hand, given DB/R, we obtain g by

g =
1

1 + tr DB/R

 D23 − D32

D31 − D13

D12 − D21


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Attitude Representations
Gibbs Vector

2. Successive Rotations

Consider the following rotations and the respective representations:

from SA to SC: gC/A

from SA to SB: gB/A , g1

from SB to SC: gC/B , g2

 

𝑆A  
𝑆B  

𝑆C  

𝐠B/A 𝐠C/B 

𝐠C/A 

We can show that:

gC/A =
g1 + g2 − [g2×] g1

1− gT
1 g2
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Attitude Representations
Gibbs Vector

Remarks:

There is no ambiguity in g.

There exists a singularity in g at ϕ = ±180o(2i + 1), ∀i .
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Attitude Representations
Euler Angles

Euler Angles

Elemetary Rotations:

They are rotations around the coordinate axes. Denote by Di (%) the ele-
mentary rotation matrix representing the displacement of an angle % around
axis i , for i ∈ {1, 2, 3}.

We can show that:

D1(%) =

 1 0 0
0 c% s%
0 −s% c%

 D2(%) =

 c% 0 −s%
0 1 0
s% 0 c%


D3(%) =

 c% s% 0
−s% c% 0

0 0 1


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Attitude Representations
Euler Angles

Three-Dimensional Attitude Representation:

Three-dimensional attitude can be represented by a sequence of three el-
ementary rotation about three consecutively different axes. There are 12
possible sequences:

313, 212, 121, 131, 323, 232

123, 321, 132, 312, 231, 213

We will adopt the sequence 123.
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Attitude Representations
Euler Angles

Relation with the Attitude Matrix:

Given the Euler angles (123) (φ, θ, ψ), we obtain DB/R by

DB/R = D3(ψ)D2(θ)D1(φ)

=

 cψcθ cψsθsφ+ sψcφ −cψsθcφ+ sψsφ
−sψcθ −sψsθsφ+ cψcφ sψsθcφ+ cψsφ
sθ −cθsφ cθcφ


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Attitude Representations
Euler Angles

On the other hand, given DB/R = [Dij ], we have

φ = −atan D32

D33
, 0o ≤ φ < 360o

θ = asin D31, −90o < θ < 90o

ψ = −atan D21

D11
, 0o ≤ ψ < 360o
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Attitude Representations
Euler Angles

Remarks:

It has no ambiguity.

For visualization, Euler angles are the best attitude representation,
since the alternatives have no obvious physical meaning.

For simulation, Euler angles are the worst attitude representation,
since it has singularity at θ = 90o (we are going to see it in the next
section) and its kinematics equation is the most nonlinear one.
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Attitude Kinematics . . .
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Attitude Kinematics
Definition

Definition

Let
−→
ΩB/R denote the angular velocity of SB with respect to SR.

The attitude Kinematics is the motion of SB w.r.t. SR as a function
of
−→
ΩB/R.

 

𝑥 R 

𝑦 R 

𝑧 R 

𝑥 B 

𝑦 B 

𝑧 B 

CM 

𝛺  B/R
 

33 / 44



Attitude Kinematics
Attitude Matrix

Kinematics in Attitude Matrix

One can show that (see reference [2])

Ḋ
B/R

= −
[
Ω

B/R
B ×

]
DB/R
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Attitude Kinematics
Axis-Angle

Kinematics in Axis-Angle

One can show that (see reference [1], p. 24–25)

ϕ̇ = aTΩ
B/R
B

ȧ =
1

2

(
[a×]− cot

ϕ

2
[a×] [a×]

)
Ω

B/R
B
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Attitude Kinematics
Quaternion

Kinematics in Quaternion

One can show that

q̇ =
1

2
Wq

where

W ,

 −
[
Ω

B/R
B ×

]
Ω

B/R
B

−
(
Ω

B/R
B

)T
0



36 / 44



Attitude Kinematics
Gibbs Vector

Kinematics in Gibbs Vector

One can show that

ġ =
1

2

(
ggT + [g×] + I3

)
Ω

B/R
B
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Attitude Kinematics
Euler Angles

Kinematics in Euler Angles 123

One can show that

α̇ = AΩ
B/R
B

where α , [φ θ ψ]T and

A ,

 cψ/cθ −sψ/cθ 0
sψ cψ 0

−cψsθ/cθ sψsθ/cθ 1


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Attitude Dynamics . . .
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Attitude Dynamics
Definition

Definition

Let
−→
T denote the total torque acting on the MAV. The attitude dynamics

describe the time variation of
−→
ΩB/R as a function of

−→
T .

 

𝑆G 

𝒮R 

𝒮B 
CM 

𝛺  B/R 

T    
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Attitude Dynamics
A Simple Model

A Simple Model

By assuming that

The MAV airframe is rigid and has inertia matrix JB (in SB).

The angular momenta of its rotors are negligible.
−→
T =

−→
T c +

−→
T d , where

−→
T c is the control torque and

−→
T d is the

disturbance torque.

the MAV’s (attitude) dynamic equation is given in SB by

Ω̇
B/R
B = J−1

B

[(
JBΩ

B/R
B

)
×
]
Ω

B/R
B + J−1

B

(
Tc

B + Td
B

)
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Thanks!
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