MP-282

Dynamic Modeling and Control of Multirotor Aerial Vehicles Chapter 4: Rotational Motion

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

> São José dos Campos - SP 2020

- 2 Attitude Representations
- 3 Attitude Kinematics
- 4 Attitude Dynamics

Coordinate Systems ...

Coordinate Systems

In this section, we consider the body CCS $S_B \triangleq \{B; \hat{x}_B, \hat{y}_B, \hat{z}_B\}$ and the reference CCS $S_R \triangleq \{R; \hat{x}_R, \hat{y}_R, \hat{z}_R\}$, where $R \equiv B \equiv CM$ and S_R is parallel to S_G .

How to represent the attitude of S_B with respect to (w.r.t.) S_R ?

Attitude Matrix

Attitude Matrix

By writting the versors of S_B in terms of the versors of S_R , we obtain:

^

$$\hat{x}_{B} = C_{xx}\hat{x}_{R} + C_{xy}\hat{y}_{R} + C_{xz}\hat{z}_{R}$$

$$\hat{y}_{B} = C_{yx}\hat{x}_{R} + C_{yy}\hat{y}_{R} + C_{yz}\hat{z}_{R}$$

$$\hat{z}_{B} = C_{zx}\hat{x}_{R} + C_{zy}\hat{y}_{R} + C_{zz}\hat{z}_{R}$$

$$\hat{x}_{R}$$

$$\sum_{k=1}^{Z_{R}} \hat{z}_{k}^{2} + C_{xy}\hat{y}_{k}^{2} + C_{zz}\hat{z}_{R}$$

$$\hat{x}_{R}$$

$$\sum_{k=1}^{Z_{R}} \hat{z}_{k}^{2} + C_{xy}\hat{y}_{R}^{2} + C_{xz}\hat{z}_{R}$$

where $C_{ij} \triangleq \cos \angle (\hat{i}_{\mathrm{B}}, \hat{j}_{\mathrm{R}})$, for $i, j \in \{x, y, z\}$, are direction cosines.

Conclusion: The direction cosines C_{ij} completely describe the attitude of $S_{\rm B}$ with respect to $S_{\rm R}$.

Therefore, the attitude of S_B with respect to S_R can be represented by the so-called attitude matrix:

$$\mathbf{D}^{\mathrm{B/R}} \triangleq \begin{bmatrix} C_{xx} & C_{xy} & C_{xz} \\ C_{yx} & C_{yy} & C_{yz} \\ C_{zx} & C_{zy} & C_{zz} \end{bmatrix}$$

which in the literature is also called:

- Direction Cosine Matrix (DCM)
- Rotation Matrix

Attitude Matrix

Properties:

1. Transformation of representations

Consider an arbitrary geometric vector $\overrightarrow{v}.$ Its algebraic representations $v_{\rm B}$ and $v_{\rm R}$ are related by

$$\textbf{v}_{\rm B} = \textbf{D}^{\rm B/R} \textbf{v}_{\rm R} \ \, \text{or} \ \, \textbf{v}_{\rm R} = \left(\textbf{D}^{\rm B/R}\right)^{-1} \textbf{v}_{\rm B}$$

For the sake of consistency, $\left(\mathbf{D}^{\mathrm{B/R}}\right)^{-1}\equiv\mathbf{D}^{\mathrm{R/B}}.$

Attitude Matrix

2. Successive Rotations

Consider the following rotations and the respective representations:

- from S_A to S_C : $D^{C/A}$
- from S_A to S_B : $D^{B/A}$
- from \mathcal{S}_{B} to \mathcal{S}_{C} : $\mathbf{D}^{\mathrm{C/B}}$

We can show that (see reference [1]):

 $\boldsymbol{\mathsf{D}}^{\mathrm{C/A}} = \boldsymbol{\mathsf{D}}^{\mathrm{C/B}}\boldsymbol{\mathsf{D}}^{\mathrm{B/A}}$

Attitude Matrix

3. Orthonormality

The attitude matrix $\mathbf{D}^{B/R}$ is said to be orthonormal because its columns (or rows) are orthogonal to one another and have unit norm, *i.e.*,

$$\left(\mathbf{D}^{\mathrm{B/R}}
ight)^{\mathrm{T}}\mathbf{D}^{\mathrm{B/R}}=\mathbf{I}_{3}$$

It implies in:

Axis-Angle

Principal (Euler) Axis-Angle

Euler Theorem:

The general angular displacement of a rigid body with a fixed point can be described by a single rotation angle φ around an axis \hat{a} passing through that point.

Therefore, the attitude of \mathcal{S}_B w.r.t. \mathcal{S}_R can be represented by the pair:

 (φ, \mathbf{a})

where $\varphi \in \mathbb{R}$ is the principal Euler angle and **a** – which is the representation of \hat{a} in any of the two aforementioned CCSs¹ – is the principal Euler axis.

¹Note that since the rotation of S_B with respect to S_R is strictly around \hat{a} , the representations \mathbf{a}_B and \mathbf{a}_R are the same. Try to do it with a coordinate axis!

Relation with the Attitude Matrix:

Given (φ, \mathbf{a}) , we obtain $\mathbf{D}^{\mathrm{B/R}}$ by (see reference [1])

 $\mathbf{D}^{\mathrm{B/R}} = \cos \varphi \mathbf{I}_3 + (1 - \cos \varphi) \mathbf{a} \mathbf{a}^{\mathrm{T}} - \sin \varphi [\mathbf{a} \times]$

where

$$[\mathbf{a} \times] \triangleq \left[egin{array}{cccc} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{array}
ight]$$

Axis-Angle

On the other hand, given $\mathbf{D}^{\mathrm{B/R}}$, we can obtain $(arphi, \mathbf{a})$ by

 $\varphi = \mathrm{acos} \frac{\mathrm{tr} \ \mathbf{D}^{\mathrm{B/R}} - 1}{2}$

and

• if
$${\rm tr}~ \boldsymbol{D}^{\rm B/R}=3$$
 then \boldsymbol{a} is indefinite

• if tr
$$\mathbf{D}^{\mathrm{B/R}} = -1$$
 then

$$a_{1} = \pm \sqrt{\frac{1+D_{11}}{2}} \qquad a_{2} = \pm \sqrt{\frac{1+D_{22}}{2}} \qquad a_{3} = \pm \sqrt{\frac{1+D_{33}}{2}}$$
$$a_{1}a_{2} = \frac{D_{12}}{2} \qquad a_{2}a_{3} = \frac{D_{23}}{2} \qquad a_{3}a_{1} = \frac{D_{31}}{2}$$

Axis-Angle

• if tr
$$\mathbf{D}^{B/R} \neq -1$$
 and $\neq 3$ then
 $a_1 = \frac{D_{23} - D_{32}}{2\sin\varphi}$ $a_2 = \frac{D_{31} - D_{13}}{2\sin\varphi}$ $a_3 = \frac{D_{12} - D_{21}}{2\sin\varphi}$

Axis-Angle

Remark:

There exists an ambiguity in the axis-angle representation:

 (φ, \mathbf{a}) and $(-\varphi, -\mathbf{a})$ represent the same attitude.

Quaternion

Euler Parameters (Quaternion)

Definition:

$$\mathbf{q} = \left[egin{array}{c} oldsymbol{arepsilon} \\ \eta \end{array}
ight] \in \mathbb{R}^4$$

where $oldsymbol{arepsilon} \in \mathbb{R}^3$ and $\eta \in \mathbb{R}$ are

$$arepsilon riangleq \mathbf{a} \sin rac{arphi}{2}$$

 $\eta riangleq \cos rac{arphi}{2}$

Quaternion

Properties:

1. Relation with the Attitude Matrix:

Given $\boldsymbol{q},$ we obtain $\boldsymbol{D}^{\mathrm{B/R}}$ by

$$\mathbf{D}^{\mathrm{B/R}} = \left(\eta^2 - \boldsymbol{arepsilon}^{\mathrm{T}} \boldsymbol{arepsilon}
ight) \mathbf{I}_3 + 2 \boldsymbol{arepsilon} \boldsymbol{arepsilon}^{\mathrm{T}} - 2 \eta \left[\boldsymbol{arepsilon} imes
ight]$$

On the other hand, given $\boldsymbol{D}^{\rm B/R}$, we can obtain \boldsymbol{q} by

$$\begin{split} \eta &= \pm \frac{1}{2} \sqrt{1 + \mathrm{tr} \ \mathbf{D}^{\mathrm{B/R}}} \\ \varepsilon &= \frac{1}{4\eta} \begin{bmatrix} D_{23} - D_{32} \\ D_{31} - D_{13} \\ D_{12} - D_{21} \end{bmatrix} \end{split}$$

Quaternion

2. Successive Rotations

Consider the following rotations and the respective representations:

- from \mathcal{S}_{A} to \mathcal{S}_{C} : $\mathbf{q}^{C/A}$
- from \mathcal{S}_{A} to \mathcal{S}_{B} : $\mathbf{q}^{\mathrm{B/A}} \triangleq (\boldsymbol{\varepsilon}_1, \eta_1)$
- from S_{B} to S_{C} : $\mathbf{q}^{\mathrm{C/B}} \triangleq (\varepsilon_2, \eta_2)$

We can show that:

$$\mathbf{q}^{\mathrm{C/A}} = \left[\begin{array}{c} \eta_2 \boldsymbol{\varepsilon}_1 + \eta_1 \boldsymbol{\varepsilon}_2 + [\boldsymbol{\varepsilon}_1 \times] \boldsymbol{\varepsilon}_2 \\ \eta_1 \eta_2 - \boldsymbol{\varepsilon}_1^{\mathrm{T}} \boldsymbol{\varepsilon}_2 \end{array} \right]$$

Quaternion

3. Unit Norm

The attitude quaternion **q** has unit norm:

 $\bm{q}^{\rm T}\bm{q}=1$

i.e., $\mathbf{q} \in \mathbb{S}^3 \subset \mathbb{R}^{4/2}$.

 $^{^2 \}text{The symbol } \mathbb{S}^3$ denotes the 3-Sphere.

Quaternion

Remark:

There is an ambiguity in the quaternion representation:

 \mathbf{q} and $-\mathbf{q}$ represent the same attitude.

Gibbs Vector

Gibbs Vector

Definition:

$$\mathbf{g} \triangleq \mathbf{a} \tan \frac{\varphi}{2}$$

In the literature, the vector $\mathbf{g} \in \mathbb{R}^3$ is also known as

- Rodrigues Parameters
- Euler-Rodrigues Parameters

Gibbs Vector

Properties:

1. Relation with the Attitude Matrix:

Given $\boldsymbol{g},$ we obtain $\boldsymbol{D}^{B/R}$ by

$$\boldsymbol{\mathsf{D}}^{\mathrm{B/R}} = \frac{\left(1 - \boldsymbol{\mathsf{g}}^{\mathrm{T}}\boldsymbol{\mathsf{g}}\right)\boldsymbol{\mathsf{I}}_{3} + 2\boldsymbol{\mathsf{g}}\boldsymbol{\mathsf{g}}^{\mathrm{T}} - 2\left[\boldsymbol{\mathsf{g}}\times\right]}{1 + \boldsymbol{\mathsf{g}}^{\mathrm{T}}\boldsymbol{\mathsf{g}}}$$

On the other hand, given $\boldsymbol{D}^{\mathrm{B/R}}$, we obtain \boldsymbol{g} by

$$\mathbf{g} = rac{1}{1 + ext{tr} \ \mathbf{D}^{ ext{B/R}}} \left[egin{array}{c} D_{23} - D_{32} \ D_{31} - D_{13} \ D_{12} - D_{21} \end{array}
ight]$$

Gibbs Vector

2. Successive Rotations

Consider the following rotations and the respective representations:

- from \mathcal{S}_A to \mathcal{S}_C : $\mathbf{g}^{C/A}$
- \bullet from \mathcal{S}_A to $\mathcal{S}_B {:}~ {\boldsymbol{g}}^{B/A} \triangleq {\boldsymbol{g}}_1$
- from \mathcal{S}_{B} to \mathcal{S}_{C} : $\mathbf{g}^{\mathrm{C}/\mathrm{B}} \triangleq \mathbf{g}_2$

We can show that:

$$\mathbf{g}^{\mathrm{C/A}} = rac{\mathbf{g}_1 + \mathbf{g}_2 - [\mathbf{g}_2 imes] \mathbf{g}_1}{1 - \mathbf{g}_1^{\mathrm{T}} \mathbf{g}_2}$$

Gibbs Vector

Remarks:

- There is no ambiguity in **g**.
- There exists a singularity in **g** at $\varphi = \pm 180^{\circ}(2i+1)$, $\forall i$.

Euler Angles

Euler Angles

Elemetary Rotations:

They are rotations around the coordinate axes. Denote by $\mathbf{D}_i(\varrho)$ the elementary rotation matrix representing the displacement of an angle ϱ around axis *i*, for $i \in \{1, 2, 3\}$.

We can show that:

$$\mathbf{D}_{1}(\varrho) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\varrho & s\varrho \\ 0 & -s\varrho & c\varrho \end{bmatrix} \mathbf{D}_{2}(\varrho) = \begin{bmatrix} c\varrho & 0 & -s\varrho \\ 0 & 1 & 0 \\ s\varrho & 0 & c\varrho \end{bmatrix}$$
$$\mathbf{D}_{3}(\varrho) = \begin{bmatrix} c\varrho & s\varrho & 0 \\ -s\varrho & c\varrho & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Three-Dimensional Attitude Representation:

Three-dimensional attitude can be represented by a sequence of three elementary rotation about three consecutively different axes. There are 12 possible sequences:

> 313, 212, 121, 131, 323, 232 123, 321, 132, 312, 231, 213

We will adopt the sequence 123.

Relation with the Attitude Matrix:

Given the Euler angles (123) ($\phi, \theta, \psi)$, we obtain ${\bf D}^{\rm B/R}$ by

$$\begin{split} \mathbf{D}^{\mathrm{B/R}} &= \mathbf{D}_{3}(\psi)\mathbf{D}_{2}(\theta)\mathbf{D}_{1}(\phi) \\ &= \begin{bmatrix} c\psi c\theta & c\psi s\theta s\phi + s\psi c\phi & -c\psi s\theta c\phi + s\psi s\phi \\ -s\psi c\theta & -s\psi s\theta s\phi + c\psi c\phi & s\psi s\theta c\phi + c\psi s\phi \\ s\theta & -c\theta s\phi & c\theta c\phi \end{bmatrix} \end{split}$$

Euler Angles

On the other hand, given $\mathbf{D}^{\mathrm{B/R}} = [D_{ij}]$, we have

$$\begin{split} \phi &= -\tan \, \frac{D_{32}}{D_{33}}, \ 0^{\circ} \leq \phi < 360^{\circ} \\ \theta &= \operatorname{asin} \, D_{31}, \ -90^{\circ} < \theta < 90^{\circ} \\ \psi &= -\operatorname{atan} \, \frac{D_{21}}{D_{11}}, \ 0^{\circ} \leq \psi < 360^{\circ} \end{split}$$

Euler Angles

Remarks:

- It has no ambiguity.
- For visualization, Euler angles are the best attitude representation, since the alternatives have no obvious physical meaning.
- For simulation, Euler angles are the worst attitude representation, since it has singularity at $\theta = 90^{\circ}$ (we are going to see it in the next section) and its kinematics equation is the most nonlinear one.

Attitude Kinematics . . .

Attitude Kinematics

Definition

Definition

- Let $\overrightarrow{\Omega}^{\rm B/R}$ denote the angular velocity of $\mathcal{S}_{\rm B}$ with respect to $\mathcal{S}_{\rm R}.$
- The attitude Kinematics is the motion of \mathcal{S}_B w.r.t. \mathcal{S}_R as a function of $\overrightarrow{\Omega}^{B/R}.$

Attitude Matrix

Kinematics in Attitude Matrix

One can show that (see reference [2])

$$\dot{\boldsymbol{\mathsf{D}}}^{B/R} = -\left[\boldsymbol{\Omega}_{B}^{B/R}\times\right]\boldsymbol{\mathsf{D}}^{B/R}$$

Axis-Angle

Kinematics in Axis-Angle

One can show that (see reference [1], p. 24–25)

$$\begin{split} \dot{\varphi} &= \mathbf{a}^{\mathrm{T}} \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} \\ \dot{\mathbf{a}} &= \frac{1}{2} \left(\left[\mathbf{a} \times \right] - \cot \frac{\varphi}{2} \left[\mathbf{a} \times \right] \left[\mathbf{a} \times \right] \right) \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} \end{split}$$

Attitude Kinematics

Quaternion

Kinematics in Quaternion

One can show that

$$\dot{\mathbf{q}} = \frac{1}{2}\mathbf{W}\mathbf{q}$$

where

$$\boldsymbol{\mathsf{W}} \triangleq \left[\begin{array}{cc} - \begin{bmatrix} \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} \times \end{bmatrix} & \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} \\ - \begin{pmatrix} \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} \end{pmatrix}^{\mathrm{T}} & \boldsymbol{0} \end{array} \right]$$

Gibbs Vector

Kinematics in Gibbs Vector

One can show that

$$\dot{\mathbf{g}} = rac{1}{2} \left(\mathbf{g} \mathbf{g}^{\mathrm{T}} + [\mathbf{g} \times] + \mathbf{I}_3
ight) \mathbf{\Omega}_{\mathrm{B}}^{\mathrm{B/R}}$$

Euler Angles

Kinematics in Euler Angles 123

One can show that

$$\dot{\boldsymbol{lpha}} = \boldsymbol{\mathsf{A}} \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B/R}}$$

where $\pmb{\alpha} \triangleq [\phi \ \theta \ \psi]^{\mathrm{T}}$ and

$$\mathbf{A} \triangleq \left[\begin{array}{ccc} c\psi/c\theta & -s\psi/c\theta & 0\\ s\psi & c\psi & 0\\ -c\psi s\theta/c\theta & s\psi s\theta/c\theta & 1 \end{array} \right]$$

Attitude Dynamics ...

Attitude Dynamics

Definition

Definition

Let \overrightarrow{T} denote the total torque acting on the MAV. The attitude dynamics describe the time variation of $\overrightarrow{\Omega}^{B/R}$ as a function of \overrightarrow{T} .

A Simple Model

A Simple Model

By assuming that

- $\bullet\,$ The MAV airframe is rigid and has inertia matrix $J_{\rm B}$ (in $\mathcal{S}_{\rm B}).$
- The angular momenta of its rotors are negligible.
- $\overrightarrow{T} = \overrightarrow{T}^c + \overrightarrow{T}^d$, where \overrightarrow{T}^c is the control torque and \overrightarrow{T}^d is the disturbance torque.

the MAV's (attitude) dynamic equation is given in \mathcal{S}_{B} by

$$\dot{\boldsymbol{\Omega}}_{\mathrm{B}}^{\mathrm{B/R}} = \boldsymbol{\mathsf{J}}_{\mathrm{B}}^{-1} \left[\left(\boldsymbol{\mathsf{J}}_{\mathrm{B}} \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} \right) \times \right] \boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} + \boldsymbol{\mathsf{J}}_{\mathrm{B}}^{-1} \left(\boldsymbol{\mathsf{T}}_{\mathrm{B}}^{\mathrm{c}} + \boldsymbol{\mathsf{T}}_{\mathrm{B}}^{\mathrm{d}} \right)$$

References...

- [1] Hughes, P. C. Spacecraft Attitude Dynamics. Dover, 2004.
- [2] Shuster, M. Survey of Attitude Representations. The Journal of Astronautical Sciences, Vol. 41, No. 4, 1993.

Thanks!