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Coordinate Systems

Two Cartesian Coordinate Systems

In this section, we consider the body CCS SB , {B; x̂B, ŷB, ẑB} and the
ground CCS SG , {G ; x̂G, ŷG, ẑG}, where B ≡ CM.
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Kinematic Equation

Scope

−→r B/G: position vector of SB w.r.t. SG.

−→v B/G ,
Gd

dt
−→r B/G: velocity vector of SB w.r.t. SG as observed from

SG.
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The kinematics are represented by the time evolution of −→r B/G as a function
of −→v B/G.
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Kinematic Equation

Model

The translational kinematics of SB w.r.t. SG are modeled in SG by

ṙ
B/G
G = v

B/G
G
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Dynamic Equation . . .
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Dynamic Equation

Scope

Denote the resulting external force by
−→
F . The translational dynamics are

represented by the time evolution of −→v B/G as a function of
−→
F .
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Dynamic Equation

Assumptions

Assume that

1 SG is an inertial frame.

2
−→
F =

−→
F c +

−→
F g +

−→
F d 1.

3
−→
F c ,
−→
F g ,
−→
F d are modeled as in Chapter 2.

Newton’s Law

The Second Newton’s Law gives

Gd

dt
−→v B/G =

1

m

−→
F

1For simplicity, we are not considering specific forces, e.g., due to a balloon, a tether,
or blading flapping. However, the extension should be smooth.
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Dynamic Equation

Model

The translational dynamics of SB w.r.t. SG are modeled in SG by

v̇
B/G
G =

1

m

(
DB/G

)T
Fc
B +

1

m
Fg
G +

1

m
Fd
G

where DB/G ≡ DB/R, which is known from Chapter 4, and the models for
Fc
B, Fg

G, as well as Fd
G are given in Chapter 2.
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Euler-Lagrange Formulation2

Generalized Coordinates

Define the vector of generalized coordinates:

x ,

[(
r
B/G
G

)T
αT

]T
where α , [φ θ ψ]T is the vector of Euler angles 123.

2This section is based on reference [1], pp. 25–28.
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Euler-Lagrange Formulation

Lagrangean

The Lagrangean of our six-DOF system is given by:

L , Kt + Kr − P

where

Kt ,
m

2

(
ṙ
B/G
G

)T
ṙ
B/G
G is the translational kinetic energy.

Kr ,
1

2

(
Ω

B/R
B

)T
JBΩ

B/R
B is the rotational kinetic energy.

P , mgeT3 r
B/G
G is the potential energy.
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Euler-Lagrange Formulation

Attitude Kinematic (Euler angles 123)

From Chapter 4, we know that 3

Ω
B/R
B = A(α)−1α̇

where

A(α)−1 =

 cθcψ sψ 0
−cθsψ cψ 0
sθ 0 1



3A similar derivation can be done for any attitude representation seen in Chapter 4.
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Euler-Lagrange Formulation

Rotational Kinetic Energy

Using the above equation, it can be rewritten in the form

Kr =
1

2
α̇TJα̇

where

J , A(α)−TJBA(α)−1
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Euler-Lagrange Formulation

Euler-Lagrange Equation

The Euler-Lagrange equation for the system under consideration is

d

dt

(
∂L
∂ẋ

)
− ∂L
∂x

=

[
FG

TB

]

where FG is the SG representation of the resulting force and TB is the SB
representation of the resulting torque.

Remark:

Since L does not contain terms involving both ṙ
B/G
G and α̇ together, we can

separate the above equation into two parts: one for the translation and the
other one for the rotation.
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Euler-Lagrange Formulation

Translation

Define the translation Lagrangean as Lt , Kt − P. Therefore, according
to the Euler-Lagrange formulation, the translational equation of motion is
obtained from

d

dt

 ∂Lt
∂ṙ

B/G
G

− ∂Lt
∂r

B/G
G

= FG

as

mr̈
B/G
G = FG −mge3

which coincides with the Newton’s Second Law.
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Euler-Lagrange Formulation

Rotation

Define the rotation Lagrangean as Lr , Kr . According to the Euler-
Lagrange formulation, the rotational equation of motion is obtained from

d

dt

(
∂Lr
∂α̇

)
− ∂Lr
∂α

= TB

as

Jα̈ + C (α, α̇) α̇ = TB

where

C (α, α̇) , −1

2
α̇T

(
A(α)−TJB

∂

∂α

(
A(α)−1

)
+

∂

∂α

(
A(α)−T

)
JBA(α)

)
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Summary . . .
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Summary

Overall MAV Modeling 4
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4This block diagram does not consider a balloon neither a tether.
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