MP-282

Dynamic Modeling and Control of Multirotor Aerial Vehicles Chapter 5: Translational Motion, Euler Lagrange, and Summary

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

> São José dos Campos - SP 2020

Contents

- Coordinate Systems
- 2 Kinematic Equation
- 3 Dynamic Equation
- 4 Euler-Lagrange Formulation

Coordinate Systems ...

Coordinate Systems

Two Cartesian Coordinate Systems

In this section, we consider the body CCS $S_B \triangleq \{B; \hat{x}_B, \hat{y}_B, \hat{z}_B\}$ and the ground CCS $S_G \triangleq \{G; \hat{x}_G, \hat{y}_G, \hat{z}_G\}$, where $B \equiv CM$.

Kinematic Equation ...

Kinematic Equation

Scope

• $\overrightarrow{r}^{B/G}$: position vector of \mathcal{S}_B w.r.t. \mathcal{S}_G . • $\overrightarrow{v}^{B/G} \triangleq \frac{{}^G d}{dt} \overrightarrow{r}^{B/G}$: velocity vector of \mathcal{S}_B w.r.t. \mathcal{S}_G as observed from \mathcal{S}_G .

The kinematics are represented by the time evolution of $\overrightarrow{r}^{B/G}$ as a function of $\overrightarrow{v}^{B/G}$.

Model

The translational kinematics of $S_{\rm B}$ w.r.t. $S_{\rm G}$ are modeled in $S_{\rm G}$ by

$$\dot{\textbf{r}}_{G}^{B/G} = \textbf{v}_{G}^{B/G}$$

Dynamic Equation ...

Dynamic Equation

Scope

Denote the resulting external force by \overrightarrow{F} . The translational dynamics are represented by the time evolution of $\overrightarrow{V}^{B/G}$ as a function of \overrightarrow{F} .

Dynamic Equation

Assumptions

Assume that

Newton's Law

The Second Newton's Law gives

$$\frac{{}^{\mathrm{G}}d}{dt}\overrightarrow{\mathsf{V}}^{\mathrm{B/G}}=\frac{1}{m}\overrightarrow{\mathsf{F}}$$

¹For simplicity, we are not considering specific forces, *e.g.*, due to a balloon, a tether, or blading flapping. However, the extension should be smooth.

Model

The translational dynamics of $\mathcal{S}_{\rm B}$ w.r.t. $\mathcal{S}_{\rm G}$ are modeled in $\mathcal{S}_{\rm G}$ by

$$\dot{\mathbf{v}}_{\mathrm{G}}^{\mathrm{B/G}} = \frac{1}{m} \left(\mathbf{D}^{\mathrm{B/G}} \right)^{\mathrm{T}} \mathbf{F}_{\mathrm{B}}^{\mathbf{c}} + \frac{1}{m} \mathbf{F}_{\mathrm{G}}^{\mathbf{g}} + \frac{1}{m} \mathbf{F}_{\mathrm{G}}^{\mathbf{d}}$$

where $\mathbf{D}^{B/G} \equiv \mathbf{D}^{B/R}$, which is known from Chapter 4, and the models for \mathbf{F}_{B}^{c} , \mathbf{F}_{G}^{g} , as well as \mathbf{F}_{G}^{d} are given in Chapter 2.

Euler-Lagrange Formulation ...

Generalized Coordinates

Define the vector of generalized coordinates:

$$\mathbf{x} \triangleq \left[\left(\mathbf{r}_{\mathrm{G}}^{\mathrm{B/G}}
ight)^{\mathrm{T}} \ \boldsymbol{lpha}^{\mathrm{T}}
ight]^{\mathrm{T}}$$

where $\boldsymbol{\alpha} \triangleq [\phi \ \theta \ \psi]^{\mathrm{T}}$ is the vector of Euler angles 123.

 $^{^{2}}$ This section is based on reference [1], pp. 25–28.

Lagrangean

The Lagrangean of our six-DOF system is given by:

 $\mathcal{L} \triangleq K_t + K_r - P$

Attitude Kinematic (Euler angles 123)

From Chapter 4, we know that ³

 $\mathbf{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} = \mathcal{A}(oldsymbollpha)^{-1} \dot{oldsymbollpha}$

$$\mathcal{A}(oldsymbol{lpha})^{-1} = \left[egin{array}{ccc} c heta c \psi & s \psi & 0 \ -c heta s \psi & c \psi & 0 \ s heta & 0 & 1 \end{array}
ight]$$

³A similar derivation can be done for any attitude representation seen in Chapter 4.

Rotational Kinetic Energy

Using the above equation, it can be rewritten in the form

$$K_r = \frac{1}{2} \dot{\boldsymbol{\alpha}}^{\mathrm{T}} \mathbb{J} \dot{\boldsymbol{\alpha}}$$

$$\mathbb{J} riangleq \mathcal{A}(lpha)^{-\mathrm{T}} \mathsf{J}_{\mathrm{B}} \mathcal{A}(lpha)^{-1}$$

Euler-Lagrange Equation

The Euler-Lagrange equation for the system under consideration is

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{x}}} \right) - \frac{\partial \mathcal{L}}{\partial \mathbf{x}} = \begin{bmatrix} \mathbf{F}_{\rm G} \\ \mathbf{T}_{\rm B} \end{bmatrix}$$

where $\mathbf{F}_{\rm G}$ is the $\mathcal{S}_{\rm G}$ representation of the resulting force and $\mathbf{T}_{\rm B}$ is the $\mathcal{S}_{\rm B}$ representation of the resulting torque.

Remark:

Since \mathcal{L} does not contain terms involving both $\dot{\mathbf{r}}_G^{B/G}$ and $\dot{\alpha}$ together, we can separate the above equation into two parts: one for the translation and the other one for the rotation.

Translation

Define the translation Lagrangean as $\mathcal{L}_t \triangleq \mathcal{K}_t - P$. Therefore, according to the Euler-Lagrange formulation, the translational equation of motion is obtained from

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}_t}{\partial \dot{\mathbf{r}}_{\mathrm{G}}^{\mathrm{B/G}}} \right) - \frac{\partial \mathcal{L}_t}{\partial \mathbf{r}_{\mathrm{G}}^{\mathrm{B/G}}} = \mathbf{F}_{\mathrm{G}}$$

as

$$m\ddot{\mathbf{r}}_{\mathrm{G}}^{\mathrm{B/G}} = \mathbf{F}_{\mathrm{G}} - mg\mathbf{e}_{3}$$

which coincides with the Newton's Second Law.

Euler-Lagrange Formulation

Rotation

Define the rotation Lagrangean as $\mathcal{L}_r \triangleq K_r$. According to the Euler-Lagrange formulation, the rotational equation of motion is obtained from

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}_r}{\partial \dot{\alpha}} \right) - \frac{\partial \mathcal{L}_r}{\partial \alpha} = \mathbf{T}_{\mathrm{B}}$$

as

 $\mathbb{J}\ddot{\boldsymbol{\alpha}} + \mathcal{C}\left(\boldsymbol{\alpha}, \dot{\boldsymbol{\alpha}}\right)\dot{\boldsymbol{\alpha}} = \mathbf{T}_{\mathrm{B}}$

$$\mathcal{C}\left(\boldsymbol{\alpha}, \dot{\boldsymbol{\alpha}}\right) \triangleq -\frac{1}{2} \dot{\boldsymbol{\alpha}}^{\mathrm{T}} \left(\boldsymbol{\mathsf{A}}(\boldsymbol{\alpha})^{-\mathrm{T}} \boldsymbol{\mathsf{J}}_{\mathrm{B}} \frac{\partial}{\partial \boldsymbol{\alpha}} \left(\boldsymbol{\mathsf{A}}(\boldsymbol{\alpha})^{-1} \right) + \frac{\partial}{\partial \boldsymbol{\alpha}} \left(\boldsymbol{\mathsf{A}}(\boldsymbol{\alpha})^{-\mathcal{T}} \right) \boldsymbol{\mathsf{J}}_{\mathrm{B}} \boldsymbol{\mathsf{A}}(\boldsymbol{\alpha}) \right)$$

Summary ...

Summary

Overall MAV Modeling⁴

⁴This block diagram does not consider a balloon neither a tether.

References . . .

[1] Goldstein, H. Classical Mechanics. Addison-Wesley, 1950.

[2] Carrillo, L.R.G., Lopez, A.E.D., Lozano, R., Pegard, C. A Quad Rotorcraft Control - Vision-Based Hovering and Navigation. Springer, 2013.

Thanks!