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Coordinate Systems . . .
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Coordinate Systems

Two Cartesian Coordinate Systems

In this section, we consider the body CCS Sg = {B;%g, §, 2} and the
ground CCS S¢ £ {G; %, Vo, 2¢;}, where B = CM.
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Kinematic Equation ...
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Kinematic Equation

Scope

o 7B/G. position vector of Sg w.r.t. Sg.

. “d )
e VB/G 2 E7B/G: velocity vector of Sg w.r.t. S¢ as observed from
Sa.

The kinematics are represented by the time evolution of 7B/G as a function

of VB/G,
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Kinematic Equation

Model

The translational kinematics of Sg w.r.t. S are modeled in S by

B/G

B/G
r¢ =Vg
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Dynamic Equation . ..
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Dynamic Equation

Scope

Denote the resulting external force by ? The translational dynamics are
represented by the time evolution of VB/G as a function of F.
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Dynamic Equation

Assumptions
Assume that

@ Sg is an inertial frame.
@ F=Fct FELFdL

o ?C, ?g, F? are modeled as in Chapter 2.
Newton’s Law
The Second Newton's Law gives

Sdope_1p
at

m

For simplicity, we are not considering specific forces, e.g., due to a balloon, a tether,

or blading flapping. However, the extension should be smooth.
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Dynamic Equation

Model

The translational dynamics of Sg w.r.t. Sg are modeled in S¢ by
1
-B/G _ E (DB/G) FC + = F + = FG

where DP/G = DB/R, which is known from Chapter 4, and the models for
F5, FE, as well as F& are given in Chapter 2.
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Euler-Lagrange Formulation . . .
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Euler-Lagrange Formulation?

Generalized Coordinates

Define the vector of generalized coordinates:

x & [(,g/c)T aT]T

where o £ [¢ 6 ¢]T is the vector of Euler angles 123.

*This section is based on reference [1], pp. 25-28.
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Euler-Lagrange Formulation

Lagrangean
The Lagrangean of our six-DOF system is given by:

LE2K+K —P

where

T
° K & 2 <r(B;/G) B/G is the translational kinetic energy.

°o K, & 3 (QE/R> JBQB/ is the rotational kinetic energy.

o PE mge3Tr(B;/G is the potential energy.
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Euler-Lagrange Formulation

Attitude Kinematic (Euler angles 123)

From Chapter 4, we know that 3

oy = Ale) la

where
chcyp sy O
Al@)™ = | —clsyp cp 0
s 0 1

3A similar derivation can be done for any attitude representation seen in Chapter 4.
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Euler-Lagrange Formulation

Rotational Kinetic Energy

Using the above equation, it can be rewritten in the form

K, = EaTJa

where

lI>

T2 Ala) " TIgA(a)™t
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Euler-Lagrange Formulation

Euler-Lagrange Equation

The Euler-Lagrange equation for the system under consideration is

d (oL _oc _
dt \ Ox ox

where Fg is the S representation of the resulting force and Ty is the Sp
representation of the resulting torque.

Fa
Ts

Remark:

Since £ does not contain terms involving both i*(B;/G and & together, we can
separate the above equation into two parts: one for the translation and the
other one for the rotation.
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Euler-Lagrange Formulation

Translation

Define the translation Lagrangean as £; = K; — P. Therefore, according
to the Euler-Lagrange formulation, the translational equation of motion is
obtained from

d 0L oLy E
4t | 5.B/G | — LB/G TG
dt 8rG/ org
as
mi‘g/G = Fg — mges

which coincides with the Newton's Second Law.
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Euler-Lagrange Formulation

Rotation

Define the rotation Lagrangean as £, 2 K,. According to the Euler-
Lagrange formulation, the rotational equation of motion is obtained from

d (9L, 9L,
i(5a) ~5a =T

o da
Jé+ C(a, &) = Tg
where
Cla,q) 2 _%aT <A(a)_TJB£1 (A(a)—l) v % (A(a) T) JBA(a)>
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Summary ...
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Overall MAV Modeling *

d
FG I B/G
9 . T
G —| Translation B/G
— VG
—>
_ Fg
i > fl *» C 1
_ i t
B, Actuators 'B ontro
J > J,| Efforts |
i=1,..,n, Tg
j=1,..,ng _ DB/R
d Rotation B/R
TB — - 5 QB/

*This block diagram does not consider a balloon neither a tether.
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Thanks!
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