MP-282

Dynamic Modeling and Control of Multirotor Aerial Vehicles Chapter 6: Flight Control

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

> São José dos Campos - SP 2020

Problem Definition

2 Problem Solution

- Control Architecture
- Attitude Control Law
- Position Control Law
- Control Allocation

Problem Definition ...

Problem Statement

The problem is to design feedback control laws for $\bar{\omega}_i$, $i = 1, ..., n_r$, and $\bar{\beta}_j$, $j = 1, ..., n_s$, for the MAV to appropriately track the desired position command $\bar{\mathbf{r}}_{G}^{B/G}$ and heading command $\bar{\psi}$.

Assumptions

- The MAV dynamic and kinematic models are known¹.
- The MAV has cascaded dynamics such that its rotation affects its translation³.
- Time-Scale Separation (TSS): the closed-loop rotational dynamics are much faster than the closed-loop translational dynamics⁴.

- ³By this assumption, the present chapter covers the fixed-rotor MAVs.
- ⁴This can be enforced by appropriately tuning the controllers.

¹See Chapters 2–4 and note that by this assumption, the disturbances are zero and the plant parameters are perfectly known.

 $^{^{2}}$ In principle, we can use some kind of observer, together with sensor measurements, to estimate these variables.

Design Requirements

- The closed-loop system must be stable.
- The closed-loop system must satisfy performance requirements, *e.g.*, in terms of overshoot, peak instant, and steady-state error.
- The closed-loop system must assure some performance level and stability even in the presence of disturbances and uncertainties⁵.
- The control law(s) must be implementable in real-time embedded systems.

⁵The design presented in this chapter does not address robustness explicitly, but feedback provides this characteristic anyway. We postpone an explicit robust design to Chapter 8.

Problem Solution ...

Control Architecture

Considering Assumptions 2–4 and focusing on fixed-rotor MAVs, we adopt the control architecture:

- Legend: PC position controller.
 - AC attitude controller.

CA 1, CA 2 - control allocators.

Attitude Control Law

The rotational dynamics were modeled in Chapter 4 by:

$$\begin{split} \dot{\boldsymbol{\mathsf{D}}}^{B/R} &= - \left[\boldsymbol{\Omega}_{B}^{B/R} \times \right] \boldsymbol{\mathsf{D}}^{B/R} \\ \dot{\boldsymbol{\Omega}}_{B}^{B/R} &= \boldsymbol{\mathsf{J}}_{B}^{-1} \left[\left(\boldsymbol{\mathsf{J}}_{B}\boldsymbol{\Omega}_{B}^{B/R}\right) \times \right] \boldsymbol{\Omega}_{B}^{B/R} + \boldsymbol{\mathsf{J}}_{B}^{-1} \left(\boldsymbol{\mathsf{T}}_{B}^{c} + \boldsymbol{\mathsf{T}}_{B}^{d}\right) \end{split}$$

Assume here that:

\$\bar{D}^{B/G}\$ is constant (TSS; it is useful for the stability study).
 \$\omega_i = \overline{\omega}_i, i = 1, ..., n_r^6.\$
 \$T_G^d = 0.\$

⁶Note that this stems from a time-scale separation assumption as well.

Considering that the dimensional parameters are exactly known, Assumption 6 implies in

$$\mathbf{T}_{\mathrm{B}}^{\mathsf{c}} = \mathbf{\bar{T}}_{\mathrm{B}}^{\mathsf{c}}$$

From this implication and Assumption 7, we obtain the design model⁷:

$$\dot{\mathbf{D}}^{\mathrm{B/R}} = -\left[\mathbf{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} \times\right] \mathbf{D}^{\mathrm{B/R}}$$
(1)
$$\dot{\mathbf{\Omega}}_{\mathrm{B}}^{\mathrm{B/R}} = \mathbf{J}_{\mathrm{B}}^{-1} \left[\left(\mathbf{J}_{\mathrm{B}} \mathbf{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} \right) \times \right] \mathbf{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} + \mathbf{J}_{\mathrm{B}}^{-1} \mathbf{\bar{\mathbf{T}}}_{\mathrm{B}}^{\mathrm{c}}$$
(2)

⁷This is how we refer to the simplified model used to design the attitude control law. In our simulations, we can distinguish between it and a simulation (or ground-truth) model.

Attitude Control Law

Based on the design model (2), we adopt a saturated PD control law with a feedback term for cancelling its nonlinearity when the saturation is not activated:

$$\boldsymbol{\gamma}^{a} = \mathbf{J}_{\mathrm{B}}\mathbf{K}_{1}\mathbf{p} - \mathbf{J}_{\mathrm{B}}\mathbf{K}_{2}\boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B/R}} - \left[\left(\mathbf{J}_{\mathrm{B}}\boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B/R}}\right)\times\right]\boldsymbol{\Omega}_{\mathrm{B}}^{\mathrm{B/R}}$$
(3)
$$\bar{\mathbf{T}}_{\mathrm{B}}^{c} = \operatorname{sat}_{\mathcal{T}}\left(\boldsymbol{\gamma}^{a}\right)$$
(4)

where $\mathbf{p} \in \mathbb{R}^3$ is a three-dimensional parameterization⁸ of the attitude control error matrix $\tilde{\mathbf{D}} \triangleq \bar{\mathbf{D}}^{\mathrm{B/R}} \mathbf{D}^{\mathrm{R/B}}$, $\mathbf{K}_1 \in \mathbb{R}^{3 \times 3}$ and $\mathbf{K}_2 \in \mathbb{R}^{3 \times 3}$ are the proportional and derivative gain matrices, respectively, $\mathcal{T} \subset \mathbb{R}^3$ is a torque admissible set, and $\operatorname{sat}_{\mathcal{T}}$ is the componentwise saturation function.

⁸See Section 4.2 for some examples of three-dimensional attitude representations.

The admissible set can be chosen as

$$\mathcal{T} \triangleq \left\{ \mathbf{T} \in \mathbb{R}^3 : -\mathbf{T}^{\max} \preceq \mathbf{T} \preceq \mathbf{T}^{\max} \right\}$$

To reflect about how to compute \mathbf{T}^{\max} , for simplicity, let us consider an MAV with fixed rotors with all rotor axes parallel to $\hat{z}_{\rm B}$. We know that if the commanded torque is null, then $\bar{f}_i = \bar{f}$, $\forall i$, where $\bar{f} \triangleq mg/n_r$ is the nominal thrust.

On the contrary, if there exists a torque command, the rotors of each opposite pair will receive thryst commands which are symmetrical w.r.t. \overline{f} . We need now to distinguish between the real (physical) and the virtual bounds of \overline{f}_i . For this end, denote:

- real bounds: $f_i \in [f^{\min}, f^{\max}]$
- virtual bounds: $\bar{f}_i \in [\zeta^{\min}, \zeta^{\max}]$

We can establish the virtual bounds as follows:

a. if $\overline{f} - f^{\min} < f^{\max} - \overline{f}$, then:

$$\zeta^{\min} = f^{\min}$$

 $\zeta^{\max} = 2\bar{f} - f^{\min}$

b. if $\overline{f} - f^{\min} \ge f^{\max} - \overline{f}$, then:

$$\zeta^{\min} = 2\bar{f} - f^{\max}$$

 $\zeta^{\max} = f^{\max}$

Finally, to obtain the maximal torque \mathbf{T}^{\max} , consider the formulas for computing the resulting efforts (see Chapter 3). Then just replace f_i in those formulas by either ζ^{\min} (if the respective term is negative) or by ζ^{\max} (if the respective term is positive).

Example: For a quadcopter Q+, the maximal control force is

$$\mathbf{T}^{\max} = \left[egin{array}{c} I(\zeta^{\max} - \zeta^{\min}) \ I(\zeta^{\max} - \zeta^{\min}) \ 2k(\zeta^{\max} - \zeta^{\min}) \end{array}
ight]$$

Remark: The above maximal bounds on the torque components are only exact if the torque command occurs about a single coordinate axis. Otherwise, if there are torque commands about more than one axis, these bounds should be reduced accordingly (why?).

Regarding the stability of the closed-loop rotational dynamics:

- By considering that the saturation of (4) is not activated and replacing (3)-(4) into (2) we obtain a linear time-invariant closed-loop rotational dynamic model. Therefore, one can see that stability, without saturation, can be reached by choosing K₁ and K₂ as diagonal and positive definite.
- For a formal stability proof considering the saturation, we suggest reading section 3.5.2 of reference [1].

Position Control Law

The translational dynamics have been modeled in Chapter 5 as:

$$\begin{split} \dot{\mathbf{r}}_{\mathrm{G}}^{\mathrm{B/G}} = \mathbf{v}_{\mathrm{G}}^{\mathrm{B/G}} \\ \dot{\mathbf{v}}_{\mathrm{G}}^{\mathrm{B/G}} = \frac{1}{m} \left(\mathbf{D}^{\mathrm{B/R}} \right)^{\mathrm{T}} \mathbf{F}_{\mathrm{B}}^{\mathbf{c}} - g \mathbf{e}_{3} + \frac{1}{m} \mathbf{F}_{\mathrm{G}}^{\mathbf{d}} \end{split}$$

Assume here that:

8. $\mathbf{D}^{B/R} = \mathbf{\bar{D}}^{B/R}$ (TSS). 9. $\omega_i = \bar{\omega}_i, i = 1, ..., n_r$. 10. $\mathbf{F}_G^d = \mathbf{0}$.

Assumptions 8–9 imply in

$$\mathbf{F}_{\mathrm{B}}^{\mathbf{c}} = \mathbf{ar{F}}_{\mathrm{B}}^{\mathbf{c}}$$
 $\mathbf{F}_{\mathrm{G}}^{\mathbf{c}} = \mathbf{ar{F}}_{\mathrm{G}}^{\mathbf{c}}$

From the above implication and Assumption 10, we obtain the design model⁹:

$$\dot{\mathbf{r}}_{\mathrm{G}}^{\mathrm{B/G}} = \mathbf{v}_{\mathrm{G}}^{\mathrm{B/G}}$$
(5)
$$\dot{\mathbf{v}}_{\mathrm{G}}^{\mathrm{B/G}} = \frac{1}{m} \mathbf{\bar{F}}_{\mathrm{G}}^{c} - g \mathbf{e}_{3}$$
(6)

⁹Note that equation (6) is still nonlinear because of the constant affine term $-g\mathbf{e}_3$.

Based on (5)-(6), we adopt a saturated PD control law with a feedforward term for cancelling the nonlinearity of (6) when the saturation is not activated:

$$\gamma^{\rho} = m \left(\mathbf{K}_{3} \left(\bar{\mathbf{r}}_{\mathrm{G}}^{\mathrm{B/G}} - \mathbf{r}_{\mathrm{G}}^{\mathrm{B/G}} \right) + \mathbf{K}_{4} \left(\dot{\bar{\mathbf{r}}}_{\mathrm{G}}^{\mathrm{B/G}} - \mathbf{v}_{\mathrm{G}}^{\mathrm{B/G}} \right) + g \mathbf{e}_{3} \right)$$
(7)
$$\bar{\mathbf{F}}_{\mathrm{G}}^{c} = \operatorname{sat}_{\mathcal{F}} \left(\gamma^{\rho} \right)$$
(8)

where $\mathbf{K}_3 \in \mathbb{R}^{3 \times 3}$ and $\mathbf{K}_4 \in \mathbb{R}^{3 \times 3}$ are the proportional and derivative gain matrices, respectively, and $\mathcal{F} \subset \mathbb{R}^3$ is a force admissible set.

The admissible set can be chosen as

$$\mathcal{F} \triangleq \left\{ \mathbf{F} \in \mathbb{R}^3 : \mathbf{F}^{\min} \preceq \mathbf{F} \preceq \mathbf{F}^{\max} \right\}$$

Denote
$$\mathbf{F}^{\min} = [F_1^{\min} \ F_2^{\min} \ F_3^{\min}]^{\mathrm{T}}$$
 and $\mathbf{F}^{\max} = [F_1^{\max} \ F_2^{\max} \ F_3^{\max}]^{\mathrm{T}}$.

From the above figure,

$$\begin{split} F_1^{\min} &= -F_1^{\max} \\ F_2^{\min} &= -F_2^{\max} \\ F_1^{\max} &= F_2^{\max} \triangleq F_{12}^{\max} = F_3^{\min} \tan \varphi^{\max} \end{split}$$

Moreover, we can choose

$$F_3^{\min} = \frac{1}{10}mg$$
$$F_3^{\max} > 2mg$$

Regarding the stability of the closed-loop translational dynamics:

- By considering that the saturation of (8) is not activated and replacing (7)-(8) into (5)-(6) we obtain a linear time-invariant closed-loop translational model. Therefore, one can see that stability, without saturation, can be reached by choosing K₃ and K₄ as diagonal and positive definite.
- For a formal stability proof considering the saturation, we suggest reading section 3.5.1 of reference [1].

Control Allocation 1

To obtain $\mathbf{\bar{D}}^{B/R}$, first note that its third line is the transpose of $\mathbf{\bar{n}}_{G} \triangleq \mathbf{\bar{F}}_{G}^{c}/\|\mathbf{\bar{F}}_{G}^{c}\|$. Then, consider the formula to convert from Euler angles 123 to attitude matrix:

$$\bar{\mathbf{D}}^{\mathrm{B/R}} = \begin{bmatrix} * & * & * \\ * & * & * \\ \mathrm{s}\bar{\theta} & -\mathrm{c}\bar{\theta}\mathrm{s}\bar{\phi} & \mathrm{c}\bar{\theta}\mathrm{c}\bar{\phi} \end{bmatrix}$$

and compute $\bar{\phi}$ and $\bar{\theta}$ from

$$ar{\phi} = - ext{atan } n_2/n_3$$

 $ar{ heta} = ext{asin } n_1$

where n_1 , n_2 , and n_3 are the components of $\mathbf{\bar{n}}_{G}$.

Finally, considering an external heading command $\bar{\psi},$ we can compute the attitude matrix command:

$$\bar{\mathbf{D}}^{\mathrm{B/R}} = \begin{bmatrix} c\bar{\psi}c\bar{\theta} & c\bar{\psi}s\bar{\theta}s\bar{\phi} + s\bar{\psi}c\bar{\phi} & -c\bar{\psi}s\bar{\theta}c\bar{\phi} + s\bar{\psi}s\bar{\phi} \\ -s\psi c\bar{\theta} & -s\bar{\psi}s\bar{\theta}s\bar{\phi} + c\bar{\psi}c\bar{\phi} & s\bar{\psi}s\bar{\theta}c\bar{\phi} + c\bar{\psi}s\bar{\phi} \\ s\bar{\theta} & -c\bar{\theta}s\bar{\phi} & c\bar{\theta}c\bar{\phi} \end{bmatrix}$$

Control Allocation 2

The task underlying AC-2 is to compute $\bar{\omega}_i$, $\forall i$, from $\bar{\mathbf{F}}_{G}^{c}$ and $\bar{\mathbf{T}}_{B}^{c}$. We are going to do it in two steps.

Step 1: Compute \bar{f}_i , $\forall i$, from $\bar{\mathbf{F}}_{\mathrm{B}}^c$ and $\bar{\mathbf{T}}_{\mathrm{B}}^c$ by inverting the control allocation equation ¹⁰ ¹¹

$$\begin{bmatrix} \bar{F}^c \\ \bar{\mathbf{T}}^c_{\rm B} \end{bmatrix} = \Gamma \bar{\mathbf{f}}$$
(9)

where $\mathbf{\overline{f}} \triangleq (\overline{f}_1, \overline{f}_2, ..., \overline{f}_{n_r}).$

¹⁰This is a general formula representing those ones obtained in Chapter 3 to relate the resulting efforts with the individual thrusts, except that the effective efforts there have been replaced here by the respective commands.

¹¹In case $n_r > 4$ (and the linear system (9) has more unknowns than equations), we can use the Moore-Penrose pseudeinverse. What is the meaning of that?

Step 2: Compute $\bar{\omega}_i$ from \bar{f}_i , $\forall i$, using the thrust model (see Section 2.6):

$$\bar{\omega}_i = \sqrt{\bar{f}_i/k_f}$$

Example: Consider a quadcopter Q+. Step 1 gives

$$\mathbf{\bar{f}} = \mathbf{\Xi} \left[\begin{array}{c} \bar{F}^c \\ \mathbf{\bar{T}}^c_{\mathrm{B}} \end{array} \right]$$

where $\Xi \triangleq \Gamma_{\mathrm{Q+}}^{-1},$ while step 2 is immediate.

References . . .

- [1] Santos, D.A., Cunha Jr, A. Flight control of a hexa-rotor airship: Uncertainty quantification for a range of temperature and pressure conditions. ISA Transactions, 2019.
- [2] Silva, A.L., Santos, D.A. Fast Nonsingular Terminal Sliding Mode Flight Control for Multirotor Aerial Vehicles. Preprint available in researchgate.net, 2020.
- [3] Santos, D.A. et al. Trajectory control of multirotor helicopters with thrust vector constraints. MED, 2013.

Thanks!