Dynamic Modeling and Control of Multirotor Aerial Vehicles Chapter 7: Control Allocation

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

São José dos Campos - SP 2020

Contents

(1) Introduction
(2) Fixed-Rotor MAVs
(3) Vectoring-Rotor MAVs

4 Complementary Reading

Introduction ...

Introduction

Control Structure

A typical control system of an over-actuated mechanical plant can be described by the following block diagram:

Legend:

$\mathbf{x} \in \mathbb{R}^{n}$ - state; $\overline{\mathbf{x}} \in \mathbb{R}^{n}$ - state command; $\overline{\boldsymbol{\tau}} \in \mathbb{R}^{m}$ - virtual control ${ }^{1} ; \mathbf{u} \in \mathbb{R}^{p}$ - actuator commands; $\boldsymbol{\tau} \in \mathbb{R}^{m}$ - resulting control efforts.

[^0]
Introduction

Comments

- The control system design can be divided into the derivation of the motion controller and control allocator.
- The main benefits of CA is achieved in control systems of over-actuated plants. Its advantages are:

1. In case of actuator saturation/fault/failure, the control allocator can still produce the actuator commands (sometimes degraded).
2. The actuator redundancy gives room for optimization (e.g., the minimization of some cost function).

Introduction

Actuator-Set Model

In general, one can model the resulting control effort $\boldsymbol{\tau} \in \mathbb{R}^{m}$ as

$$
\boldsymbol{\tau}=\mathbf{h}(\mathbf{u}, \mathbf{x}, t)
$$

where \mathbf{h} is a known map and t denotes time.

Remark

The time dependence of \mathbf{h} accounts for the actuator dynamics. However, in this chapter, we will assume that the actuator dynamics are very fast and, in this case, it would suffice to write $\boldsymbol{\tau}=\mathbf{h}(\mathbf{u}, \mathbf{x})$.

Introduction

Control Allocation Objective

Consider that a virtual control input $\overline{\boldsymbol{\tau}} \in \mathbb{R}^{m}$ is provided by the motion controller. The control allocation objective is to compute the actuator commands $\mathbf{u} \in \mathbb{R}^{p}$ which ensure that the resulting control effort $\tau \in \mathbb{R}^{m}$ will be sufficiently close to $\overline{\boldsymbol{\tau}}$.

Introduction

Problem Formulation

It can be done as an optimization problem like

$$
\min _{\mathbf{u}, \mathbf{s}}\{\|\mathbf{Q} \mathbf{s}\|+J(\mathbf{u}, \mathbf{x}, t)\}
$$

s.t.

$$
\begin{aligned}
& \overline{\boldsymbol{\tau}}-\mathbf{h}(\mathbf{u}, \mathbf{x}, t)=\mathbf{s} \\
& \mathbf{u} \in \mathbb{U} \\
& \mathbf{u}-\mathbf{u}_{\text {prev }} \in \delta \mathbb{U}
\end{aligned}
$$

where
J is some cost function.
$\mathbf{Q} \in \mathbb{R}^{m \times m}$ is a weighting matrix.
$\mathbf{s} \in \mathbb{R}^{m}$ is a slack variable.
$\mathbf{u}_{\text {prev }}$ is the previous value of \mathbf{u} (previous sampling time).
\mathbb{U} and $\delta \mathbb{U}$ are given compact set.

Introduction

Remarks

(1) A generic example of J :

$$
J(\mathbf{x}, \mathbf{u}, t)=\frac{1}{2}\left(\mathbf{u}-\mathbf{u}_{n}\right)^{\mathrm{T}} \mathbf{W}\left(\mathbf{u}-\mathbf{u}_{n}\right)
$$

where $\mathbf{W} \in \mathbb{R}^{p \times p}$ is a weighting matrix and $\mathbf{u}_{n} \in \mathbb{R}^{p}$ is the nominal value of \mathbf{u}. Basically, by this J, the optimization problem tries to minimize the deviation of \mathbf{u} w.r.t. \mathbf{u}_{n}.
(2) Note that the cost term $\|\mathbf{Q s}\|$ along with the equality constraint $\overline{\boldsymbol{\tau}}-$ $\mathbf{h}(\mathbf{u}, \mathbf{x}, t)=\mathbf{s}$ forces $\boldsymbol{\tau}$ towards $\overline{\boldsymbol{\tau}}$, thus contributing with the control allocation objective (see slide 7).
(3) The last two constraints represent the actuator physical bounds.

Fixed-Rotor MAVs ...

Fixed-Rotor MAVs

Actuator-Set Model

The actuator-set models for the fixed-rotor MAVs have the common form ${ }^{2}$

$$
\left[\begin{array}{c}
F^{c} \\
\mathbf{T}_{\mathrm{B}}^{c}
\end{array}\right]=\mathbf{\Gamma} \mathbf{f}
$$

where $\Gamma \in \mathbb{R}^{4 \times n_{r}}$ is the allocation matrix and n_{r} is the total number of rotors.

Assumption: The actuator dynamics are very fast, implying that $\overline{\mathbf{f}} \approx \mathbf{f}$.
Define: The virtual control input is

$$
\overline{\boldsymbol{\tau}} \triangleq\left[\begin{array}{c}
\bar{F}^{c} \\
\overline{\mathbf{T}}_{\mathrm{B}}^{c}
\end{array}\right]
$$

Fixed-Rotor MAVs

Control Structure

We known from Chapter 6 that the control allocation for fixed-rotor MAVs can be divided into two parts:

The blue block is simply realized by the inversion of the thrust model for each individual rotor, i.e.,

$$
\bar{\omega}_{i}=\sqrt{\bar{f}_{i} / k_{f}}, \quad i=1, \ldots, n_{r}
$$

In the sequel, we are going to focus on the green block.

Fixed-Rotor MAVs

Formulation 1

Computation of thurst commands considering the rotor bounds:

$$
\begin{aligned}
& \min _{\overline{\mathbf{f}}}\|\overline{\mathbf{f}}\|^{2} \\
& \text { s.t. } \\
& \overline{\boldsymbol{\tau}}=\overline{\mathbf{\Gamma}} \\
& \mathbf{e}_{i}^{\mathrm{T}} \overline{\mathbf{f}} \in\left[f_{\min }, f_{\max }\right], \quad \forall i=1, \ldots, n_{r} \\
& \mathbf{e}_{i}^{\mathrm{T}}\left(\overline{\mathbf{f}}-\overline{\mathbf{f}}_{\text {prev }}\right) \in\left[\delta f_{\min }, \delta f_{\max }\right], \quad \forall i=1, \ldots, n_{r}
\end{aligned}
$$

where
$f_{\min } \in \mathbb{R}$ and $f_{\max } \in \mathbb{R}$ are the thrust bounds.
$\delta f_{\text {min }} \in \mathbb{R}$ and $\delta f_{\text {max }} \in \mathbb{R}$ are the thrust rate bounds.
$\overline{\mathbf{f}}_{\text {prev }}$ is the previous value of $\overline{\mathbf{f}}$ (previous sampling time).

Fixed-Rotor MAVs

Remarks

(1) Note that this problem is similar to the prototype one given in slide 8, except that here we are not considering the slack variable s. Neglecting s is not an issue since we assure that the optimization input $\overline{\boldsymbol{\tau}}$ is inside its feasible set.
(2) The above problem is a quadratic program, for which there exist many efficient (comercial and free) solvers available. For solving it in MATLAB, one can use the quadprog command (from the Optimization Toolbox).

Fixed-Rotor MAVs

Formulation 2

One can ignore the inequality constraints in formulation 1 to obtain the following simplified problem:

$$
\begin{aligned}
& \min _{\overline{\mathbf{f}}}\|\overline{\mathbf{f}}\|^{2} \\
& \text { s.t. } \\
& \overline{\boldsymbol{\tau}}=\bar{\Gamma} \overline{\mathbf{f}}
\end{aligned}
$$

The above optimization problem has a unique closed-form solution that can be obtained using Lagrange multiplier, resulting

$$
\overline{\mathbf{f}}^{*}=\boldsymbol{\Gamma}^{\dagger} \overline{\boldsymbol{\tau}}
$$

where $\boldsymbol{\Gamma}^{\dagger} \triangleq \boldsymbol{\Gamma}^{\mathrm{T}}\left(\boldsymbol{\Gamma} \boldsymbol{\Gamma}^{\mathrm{T}}\right)^{-1}$ is the Moore-Penrose's pseudo-inverse matrix.

Fixed-Rotor MAVs

After computing the optimal solution $\overline{\mathbf{f}}^{*}$, it is required to saturate it so as to respect the thrust and thrust-rate bounds ${ }^{3}$ (respectively):

$$
\overline{\mathbf{f}} \in \mathbb{U} \cap\left(\delta \mathbb{U} \oplus \overline{\mathbf{f}}_{\text {prev }}\right)
$$

Remarks

(1) The above solution can produce a dangerous mismatch between the virtual control $\bar{\tau}$ and the resulting control effort $\boldsymbol{\tau} \triangleq\left(F^{c}, \mathbf{T}_{\mathrm{B}}^{c}\right)$.
(2) However, it provides a lighter computational implementation compared with formulation 1.

[^1]$\mathcal{A} \oplus \mathcal{B} \triangleq\{\mathbf{a}+\mathbf{b}: \mathbf{a} \in \mathcal{A}, \mathbf{b} \in \mathcal{B}\}$.

Vectoring-Rotor MAVs ...

Vectoring-Rotor MAVs

Example 1: Quadcopter with Longitudinal-Vectoring Rotors In Chapter 3, we obtained the actuator-set model:

$$
\left[\begin{array}{c}
F_{1}^{c} \\
F_{3}^{c} \\
\mathbf{T}_{\mathrm{B}}^{c}
\end{array}\right]=\boldsymbol{\Gamma}_{\mathrm{LV} 4} \mathbf{f}
$$

where

$$
\boldsymbol{\Gamma}_{\mathrm{LV} 4} \triangleq\left[\begin{array}{cccc}
\mathrm{s} \beta_{1} & \mathrm{~s} \beta_{2} & \mathrm{~s} \beta_{3} & \mathrm{~s} \beta_{4} \\
\mathrm{c} \beta_{1} & \mathrm{c} \beta_{2} & \mathrm{c} \beta_{3} & \mathrm{c} \beta_{4} \\
I \mathrm{c} \beta_{1}+k \mathrm{~s} \beta_{1} & -I \mathrm{c} \beta_{2}-k \mathrm{~s} \beta_{2} & -I \mathrm{c} \beta_{3}+k \mathrm{~s} \beta_{3} & I \mathrm{c} \beta_{4}-k \mathrm{~s} \beta_{4} \\
-I \mathrm{c} \beta_{1} & -I \mathrm{c} \beta_{2} & I \mathrm{c} \beta_{3} & I \mathrm{c} \beta_{4} \\
-I \mathrm{~s} \beta_{1}+k \mathrm{c} \beta_{1} & I \mathrm{~s} \beta_{2}-k \mathrm{c} \beta_{2} & I \mathrm{~s} \beta_{3}+k \mathrm{c} \beta_{3} & -I \mathrm{~s} \beta_{4}-k \mathrm{c} \beta_{4}
\end{array}\right]
$$

Vectoring-Rotor MAVs

Consider $\beta_{1}=\beta_{2}=\beta_{3}=\beta_{4} \triangleq \beta$ and neglect the actuator dynamics. Given $\overline{\mathbf{F}}_{\mathrm{G}}^{c}, \overline{\mathbf{T}}_{\mathrm{B}}^{c}$, and $\mathbf{D}^{\mathrm{B} / \mathrm{R}}$, the actuator commands $\bar{\beta}$ and $\bar{f}_{i}, i=1, \ldots, 4$, are obtained by the following procedure:

1. compute $\overline{\mathbf{F}}_{\mathrm{B}}^{c} \triangleq\left(\bar{F}_{1}^{c}, \bar{F}_{2}^{c}, \bar{F}_{3}^{c}\right)=\mathbf{D}^{\mathrm{B} / \mathrm{R}} \overline{\mathbf{F}}_{\mathrm{G}}^{c}$
2. compute $\bar{\beta}=\operatorname{atan} \bar{F}_{1}^{c} / \bar{F}_{3}^{c}$
3. compute

$$
\overline{\mathbf{f}}=\left(\check{\Gamma}_{\mathrm{LV} 4}\right)^{-1}\left[\begin{array}{c}
\bar{F}_{3}^{c} \\
\overline{\mathbf{T}}_{\mathrm{B}}^{c}
\end{array}\right]
$$

where $\check{\Gamma}_{\mathrm{LV} 4}$ is obtained from $\Gamma_{\mathrm{LV} 4}$ by eliminating its first line.
See the figure below.

Vectoring-Rotor MAVs

On the other hand, the attitude command can be set to

$$
\overline{\mathbf{D}}^{\mathrm{B} / \mathrm{R}}=\mathbf{D}_{\overline{\boldsymbol{n}}_{\mathrm{B}}}(\bar{\psi}) \mathbf{D}_{1}(-\bar{\lambda})
$$

where $\bar{\psi}$ and

$$
\bar{\lambda} \triangleq \operatorname{asin} \frac{\bar{F}_{2}^{c}}{\left\|\overline{\mathbf{F}}_{\mathrm{B}}^{c}\right\| \cos \bar{\beta}} \quad \overline{\mathbf{n}}_{\mathrm{B}} \triangleq \frac{\overline{\mathbf{F}}_{\mathrm{B}}^{c}}{\left\|\overline{\mathbf{F}}_{\mathrm{B}}^{c}\right\|} \quad \square
$$

Vectoring-Rotor MAVs

Exercise: Quadcopter with Transversal-Vectoring Rotors
Consider now the MAV illustrated below. Its actuator-set model was obtained in Chapter 3; it has the format:

$$
\left[\begin{array}{l}
\mathbf{F}_{\mathrm{B}}^{c} \\
\mathbf{T}_{\mathrm{B}}^{c}
\end{array}\right]=\boldsymbol{\Gamma}_{\mathrm{TV} 4}\left(\beta_{1}, \ldots, \beta_{4}\right) \mathbf{f}
$$

Design a control allocator for this model. Which is the corresponding attitude command?

Complementary Reading ...

Complementary Reading

We suggest the following complementary texts:

- A survey on CA in general $\rightarrow \operatorname{Ref}[1]$.
- CA for aerospace systems $\rightarrow \operatorname{Ref}[2]$.
- CA for MAVs using pseudo-inverse matrix and saturation \rightarrow Ref [3].

References ...

References

囲［1］Johansen，T．A．and Fossen，T．I．Control Allocation－A Survey． Automatica，49， 2013.

䡒［2］Oppenheimer，M．，Doman，D．，Bolender，M．（2010）．Control allocation．In W．S．Levine（Ed．），The control handbook，control system applications（2nd ed．）．（Chapter 8）

直［3］Ducard，G．J．J．and Hua，M．D．Discussion and Practical Aspects on Control Allocation for a Multi－Rotor Helicopter．International Archives of the Photogrammetry，Remote Sensing and Spatial Information Sciences，September 2011，Zurich．
©［4］Boyd，S．and Vandenberghe，L．Convex Optimization．Cambridge University Press， 2004.

Thanks!

[^0]: ${ }^{1}$ The virtual control is typically a command for the resulting control effort.

[^1]: ${ }^{3}$ The symbol \oplus denotes the set (or Minkowski) sum, defined as

