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Stability of Nonlinear Systems 1

Nonlinear System

Consider a time-invariant unforced nonlinear system described by the fol-
lowing vectorial ODE:

ẋ = f(x) (1)

where x ∈ Rn is the state vector and f : Rn → Rn is a nonlinear vector field.

1For more details about Stability Theory, the reader is referred to [1].
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Stability of Nonlinear Systems

Equilibrium Point

The state x∗ ∈ Rn is said to be an equilibrium point 2 of system (1) if once
x(t) becomes equal to x∗ ∈ Rn, it keeps there forever.

Therefore, the equilibrium point(s) x∗ is (are) such that

0 = f(x∗) (2)

Remark:

if f(x) = Ax, then the equilibrium points x∗ constitute the null space of A.
Moreover, if A is nonsingular, this null space is a singleton, i.e., there is a
unique equilibrium point and it is x∗ = 0.

2Also called equilibrium state.
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Stability of Nonlinear Systems

Preliminary Comments

Stability is a property of an equilibrium point of the system. However,
when the system has just one equilibrium point, it is common to hear
that itself is stable or not.

We consider the equilibrium point at the origin of Rn, i.e., x∗ = 0.
There is no loss of generality here, since a change of variable can
bring an arbritrary state to the origin.

To analyze the stability of the equilibrium point x∗ = 0, we present
the Lyapunov method. There are many possible stability concepts out
there. We are going to present just the so-called (Lyapunov) stability,
asymptotic stability, and exponential stability.
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Stability of Nonlinear Systems

(Lyapunov) Stability

The equilibrium state x∗ = 0 is stable if for any ε > 0, there exists δ > 0
such that 3

if ‖x(0)‖ < δ, then ‖x(t)‖ < ε, ∀t > 0.

Otherwise, x∗ = 0 is said to be unstable.

 

  

0 

𝐱(0) 

𝑥1 

𝑥2 

𝜀 

𝛿 0 

𝐱(0) 

𝑥1 

𝑥2 

𝜀 

𝛿 

3Denote the zero-centered γ-ball Bγ , {x ∈ Rn : ‖x‖ < γ}. Note that one could
alternatively write x ∈ Bγ in place of ‖x‖ < γ.
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Stability of Nonlinear Systems

Asymptotic Stability

The equilibrium state x∗ = 0 is asymptocally stable in Bδ if:

it is stable and

‖x(0)‖ < δ =⇒ x(t)→ 0 as t →∞.
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Stability of Nonlinear Systems

Exponential Stability

The equilibrium state x∗ = 0 is exponentially stable in Bδ if there exist
α > 0 and λ > 0 such that

∀t > 0,∀x(0) ∈ Bδ, ‖x(t)‖ ≤ α‖x(0)‖ exp(−λt)
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Both asymptotic and exponential stability involves convergence to the equi-
librium point. The difference is that the later one specifies a convergence
rate.
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Stability of Nonlinear Systems

Global (Asymptotic or Exponential) Stability

The the above stability definitions characterize a system in a local neigh-
borhood of the equilibrium point. Sometimes we need a broader definition.

If asymptotic (or exponential) stability holds for any initial condition x(0) ∈
Rn, the equilibrium point x∗ is said to be global asymptotic (exponential)
stable.
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Stability of Nonlinear Systems

Positive Definite Function

A scalar continuous function V(x) is said to be locally positive definite if

V (0) = 0 and

V (x) > 0, ∀x ∈ Bδ − {0}

Moreover, if Bδ = Rn, then V (x) is said to be globally positive definite.

Negative Definite Function

A scalar continuous function V (x) is said to be locally (globally) negative
definite if −V (x) is locally (globally) positive definite.
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Stability of Nonlinear Systems

Lyapunov Function

A scalar function V : Rn → R is said to be a Lyapunov function of system
(1) in Bδ if:

it is positive definite in Bδ,

it has continuous partial derivatives in Bδ, and

it is such that V̇ (x) ≤ 0 (along any trajectory of (1) in Bδ).
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Stability of Nonlinear Systems 4

Lyapunov Theorem for Local Stability

Consider that x∗ = 0 is an equilibrium point of system (1). If there exists a
Lyapunov function V with domain Bδ for system (1), then x∗ = 0 is locally
stable. Moreover,

if V̇ (x) < 0, then x∗ = 0 is locally asymptotic stable and

if there exist positive constants α1, α2, α3, α4 such that

α1‖x‖2 ≤ V (x) ≤ α2‖x‖2

V̇ (x) ≤ −α3‖x‖2∥∥∥∥∂V∂x

∥∥∥∥ ≤ α4‖x‖

then x∗ = 0 is locally exponentially stable.

4See the proofs in (Slotine & Li, 1991).
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Stability of Nonlinear Systems

Lyapunov Theorem for Global Stability

If in addition to the conditions of the above results it holds that

V (x)→∞ as ‖x‖ → ∞

then the equilibrium point x∗ = 0 is globally (asymptotically/exponentially)
stable.
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Stability of Nonlinear Systems

Finite-Time Convergence

The variable y ∈ R which satisfies the differencial equation

ẏ = −ηy1/2 (3)

converges to zero in finite time.

In fact, its solution verifies

y1/2(t) = −η
2
t + y1/2(0) (4)

from which one can compute the convergence time:

tc =
2

η
y1/2(0) (5)
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Sliding Mode Control
A Second-Order System

Problem Definition

Consider a second-order nonlinear system described by

ẍ = f (x , ẋ) + b(x , ẋ)u + d(x , ẋ , u, t) (6)

where (x , ẋ) ∈ R2 is the state vector, u ∈ R is the control input, and
d(x , ẋ , u, t) ∈ R is an unkown disturbance input.

Assume that

b(x , ẋ) 6= 0, ∀x , ẋ
|d(x , ẋ , u, t)| ≤ L > 0, L is known

The problem is to design a control u to make (x , ẋ) → (0, 0) and re-
main there forever (in spite of the presence of the bounded disturbance
d(x , ẋ , u, t)).
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Sliding Mode Control
A Second-Order System

General Idea of the SMC

The system state is guided to the origin in two steps:

Reaching Mode. Here, the state is guided from its initial condition to
a manifold of the state space. This manifold is called sliding surface.

Sliding Mode. Here, the state is forced to slide on the sliding surface
until arriving to the origin.
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Let’s construct such a control law...
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Sliding Mode Control
A Second-Order System

Sliding Variable and Sliding Surface

Define a sliding variable s ∈ R as

s , c1x + c2ẋ (7)

where c1 and c2 are scalar coefficients. The corresponding sliding surface is
S , {(x , ẋ) : s = 0}. See the illustration.
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Sliding Mode Control
A Second-Order System

Sliding Mode

Assume that the reaching mode is so designed that once the state reaches
the sliding surface, at a finite instant tr , it keeps there forever, i.e.,

s(t) = 0, ∀t ≥ tr (8)

From (7) and (8), we see that the system dynamic in the sliding mode is
described by

ẋ = −c1
c2
x (9)

Therefore, by choosing positive coefficients c1 and c2, we know from the
linear control theory that both x and ẋ converges to zero exponentionally.
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Sliding Mode Control
A Second-Order System

Reaching Mode

Here we want to design u so as to drive the sliding variable s to zero in a
finite time tr . For this end, consider the Lyapunov candidate function:

V (s) =
1

2
s2 (10)

and note that the convergence s → 0 (in finite time) is equivalent to V (s)→
0 (in finite time). But it turns out that the later convergence can be obtained
by satisfying 5

V̇ ≤ −ηV 1/2 (11)

From (10)–(11), we finally obtain the so-called reaching condition:

sṡ ≤ − η√
2
|s| (12)

5See equation (3).
21 / 53



Sliding Mode Control
A Second-Order System

Control Law

Using the reaching condition (12), we can show that the control law

u = − 1

c2b(x , ẋ)

(
c2f (x , ẋ) + c1ẋ + c2κsign(s)

)
(13)

with

κ = η/
(
c2
√

2
)

+ L (14)

drives the state (x , ẋ) of system (6) to the sliding surface S in a finite time

tr ≤
√

2

η
|s(0)| (15)

and make (x , ẋ)→ (0, 0) exponentionally.
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Sliding Mode Control
A Second-Order System

Example

Using a MATLAB code, we simulate the closed-loop system (6) with (13),
considering f (x , ẋ) = x2, b(x , ẋ) = 1, and d(x , ẋ , u, t) as a uniform-
distributed random variable with support [−L, L], where L = 0.1. The
control parameters are set to η = 2, c1 = 3, c2 = 4. The system starts
from the initial condition (x , ẋ) = (1,−2).

See the plots on the next page.
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Sliding Mode Control
A Second-Order System

Example
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Sliding Mode Control
A Second-Order System

Chattering

As you can see in the last plot above, the control input provided by the SMC
has a high-frequency switching behavior, which, in most applications, cannot
be realized in practice. Moreover, such discontinuous control can cause a
zig-zag state motion across S (see the illustration) due to implementation
imperfections, such as measurement noise, sampling. This zig-zag motion
is called chattering.
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Sliding Mode Control
A Second-Order System

Chattering Reduction by Saturation Function

Chattering can be attenuated or even eliminated by introducing a thin
boundary layer, with thickness φ, around S and requiring the state (x , ẋ) to
slide inside it. The state motion in the new sliding region

Sφ , {(x , ẋ) : |s| ≤ φ} (16)

is called quasi-sliding mode. The corresponding quasi-sliding mode control
law is obtained from (13) by replacing sign(s) by the saturation function

sat(s/φ) =


1, s > φ

s/φ, s ∈ [−φ, φ]
−1, s < −φ

(17)
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Sliding Mode Control
A Second-Order System

The figure illustrates the quasi-sliding region (or band). From its geometry,
we can verify that the corresponding steady-state error is bounded by

εx =
φ

sin θ
and εẋ =

c1φ

c2 sin θ
(18)

where θ , atan(c1/c2).
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Sliding Mode Control
A Second-Order System

Chattering Reduction by Sigmoid Function

Another simple way to reduce chattering is by approximating sign(s) by a
sigmoid function, i.e.,

sign(s) ≈ s

|s|+ ζ
(19)

where ζ is a small positive scalar that must be chosen so as to trade off
robustness for control smoothness.
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Sliding Mode Control
A Second-Order System

Comments

For a complementary reading about the basics on nonlinear systems
and a specific chapter on SMC, we recommend the reference (Slotine
& Li, 1991).

The SMC literature is quite vast. Chapter 1 of (Sthessel et al., 2014)
gives a nice overview of different approaches.
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Sliding Mode Control
Multi-Input Nonlinear System

System Model

Consider now a multi-input nonlinear system described by

ẋ1 = f1(x) (20)

ẋ2 = f2(x) + B(x)u + d(x, t) (21)

where x ∈ Rn is the state, x , (x1, x2), x1 ∈ Rn−m, x2 ∈ Rm, u ∈ Rm is
the control input, d(x, t) ∈ Rm is the disturbance input.

Assume that
∂f1
∂x2

B(x) is nonsingular

‖d(x, t)‖∞ ≤ L > 0, L is known
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Sliding Mode Control
Multi-Input Nonlinear System

Sliding Variable

s , C1x1 + C2ẋ1 ∈ Rm (22)

where C1 and C2 are specified diagonal positive-definite matrices.

Lyapunov Candidate

V (s) ,
1

2
sTs (23)

Sliding Condition

sTṡ ≤ − η√
2
‖s‖ (24)
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Sliding Mode Control
Multi-Input Nonlinear System

Control Law

Consider that system (20)–(21) is controlled by

u = −
(

C2
∂f1
∂x2

B

)−1 [
C1f1 + C2

∂f1
∂x1

f1 + C2
∂f1
∂x2

f2 + κ

∥∥∥∥C2
∂f1
∂x2

∥∥∥∥ s

‖s‖

]
(25)

Therefore, we can show that the sliding mode S is attained if κ =

η/

(√
2

∥∥∥∥C2
∂f1
∂x2

∥∥∥∥)+L. Moreover, from (22), the sliding motion is described

by

ẋ1 = −C−12 C1x1 (26)
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Sliding Mode Control
Multi-Input Nonlinear System

Chattering Reduction with Sigmoid Function

To reduce chattering, we can use a multivariate version of the sigmoid
approximation given in equation (19):

sign(s) ,
s

‖s‖
≈ s

‖s‖+ ζ
(27)

where ζ is a small positive scalar.
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Application to MAV Flight Control
Preliminary Comments

Similar to Chapter 6:

The objective here is to control the MAV position and heading, while
stabilizing the 2-DOF attitude of the airframe w.r.t. the local horizon-
tal.

The assumptions are:

A1. There is a time-scale separation between the closed-loop rotational and
translational dynamics.

A2. The actuator dynamics are negligible (another time-scale separation!).

A3. The actuator parameters are exactly known.

The solution will be based on the hierarchical control arquitecture pre-
sented in Chapter 6, but the position and attitude control laws will be
designed using the multi-input SMC of equation (25).
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Application to MAV Flight Control
Attitude Controller

Geometric Attitude and Angular Velocity Errors

Define the attitude and angular velocity control errors

D̃ , DB/B = D̄
B/G

(
DB/G

)T
(28)

Ω̃ , Ω
B/B
B = D̃

T
Ω

B/G

B
−Ω

B/G
B (29)

Further, consider the three-dimensional parameterization of D̃ by the Gibbs
vector g̃ ∈ R3 (see Chapter 4),

g̃ =
1

1 + tr D̃

 D̃23 − D̃32

D̃31 − D̃13

D̃12 − D̃21

 (30)

where D̃ij are elements of D̃.
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Application to MAV Flight Control
Attitude Controller

Attitude Error Kinematics and Dynamics

The error kinematics and dynamics can be written as

˙̃g =
1

2

(
g̃g̃T + [g̃×] + I3

)
Ω̃ (31)

˙̃Ω = −J−1B

[(
JBΩ

B/R
B

)
×
]

Ω
B/R
B − J−1B

(
Tc

B + Td
B

)
+ D̃

T
(

[Ω̃×]Ω̄ + ˙̄Ω
)

(32)

where Ω̄ ≡ Ω
B/G

B
.

38 / 53



Application to MAV Flight Control
Attitude Controller

Design Model

Considering assumption A1, we have ˙̄Ω = 0, Ω̄ = 0 and, consequently,

Ω̃ ≡ −Ω
B/G
B . Moreover, considering A2 and A3, it holds that T̄

c
B = Tc

B.
Therefore, from (31)–(32), we can obtain the following design model for the
attitude controller:

˙̃g =
1

2

(
g̃g̃T + [g̃×] + I3

)
Ω̃ (33)

˙̃Ω = −J−1B

[(
JBΩ̃

)
×
]

Ω̃− J−1B

(
T̄

c
B + Td

B

)
(34)

Here we add one more assumption:

A4. Td
B ∈ R3 is such that

∥∥∥Td
B

∥∥∥
∞
≤ ρa and ρa ∈ R+ is known.

39 / 53



Application to Flight Control
Attitude Controller

Sub-Problem 1

So the problem is to design a feedback control law for T̄
c
B that makes

(
g̃, Ω̃

)
→ (0, 0)

asymptotically (or exponentially).

Remark: From the Gibbs vector definition, g̃ , atan(ϕ/2), where a and ϕ
are the principal Euler axis and angle, we see that it has singularities at the
odd multiples of ϕ = ±π rad. Since g̃ represents the attitude control error
and, on the other hand, the singularities are far from zero, we could assume
that g̃ is sufficiently small to avoid them. In fact, the closest singularities
±π could be avoided by a reference governor that takes into account such
state constraints.
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Application to MAV Flight Control
Attitude Controller

Sliding Mode

Consider the sliding variable

sa , C1g̃ + C2
˙̃g (35)

where C1 ∈ R3 and C2 ∈ R3 are given positive-definite diagonal matrices.

Therefore, the sliding motion is governed by the LTI system

˙̃g = −C−12 C1g̃ (36)

whose origin g̃ = 0 is clearly exponentially stable.
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Application to MAV Flight Control
Attitude Controller

Reaching Mode and Control Law

To reach the sliding surface in finite time, we need to choose T̄
c
B so as to

satisfy the sliding condition:

sTa ṡa ≤ −
ηa√

2
‖sa‖ (37)

where ηa ∈ R+ is a given parameter.

For this end, we could adopt the control law

T̄
c
B = −

(
C2M1J−1B

)(
−C1M1Ω̃− C2

d

dt
(M1)Ω̃+

C2M1J−1B

[(
JBΩ̃

)
×
]

Ω̃ + κa‖C2M1J−1B ‖
sa
‖sa‖

)
(38)
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Application to MAV Flight Control
Attitude Controller

where

M1 , g̃g̃T + [g̃×] + I3 (39)

and κa must be chosen as

κa = −ρa −
√

2ηa∥∥∥C2M1J−1B

∥∥∥ (40)

Remark: In fact, the above control law was designed to make
(

g̃, ˙̃g
)
→

(0, 0). However, from (33) we can see that a consequence of this is(
g̃, Ω̃

)
→ (0, 0)

thus accomplishing the control objective of Sub-Problem 1 .
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Application to MAV Flight Control
Position Controller

Position and Velocity Errors

Define the position and velocity control errors

r̃ , r̄
B/G
G − r

B/G
G (41)

ṽ , v̄
B/G
G − v

B/G
G (42)

where r̄
B/G
G ∈ R3 and v̄

B/G
G ∈ R3 are the position and velocity commands.
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Application to MAV Flight Control
Position Controller

Position Error Kinematics and Dynamics

The error kinematics and dynamics are described by

˙̃r = ṽ (43)

˙̃v = − 1

m
Fc
G + ge3 −

1

m
Fd
G + ˙̄v

B/G
G (44)
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Application to MAV Flight Control
Position Controller

Design Model

Considering assumption A1, at this point, we have DB/G = D̄
B/G

. More-
over, considering A2 and A3, it holds that F̄

c
B = Fc

B. Therefore, it is also
true that F̄

c
G = Fc

G. In this context, from (43)–(44), we can obtain the
following design model for the position controller:

˙̃r = ṽ (45)

˙̃v = − 1

m
F̄
c
G + ge3 −

1

m
Fd
G + ˙̄v

B/G
G (46)

where Fd
G ∈ R3 is such that

∥∥∥Fd
G

∥∥∥ ≤ ρp and ρp ∈ R+ is a known parameter.
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MAV Flight Control
Position Controller

Sub-Problem 2

So the problem is to design a feedback control law for F̄
c
G that makes

(
r̃, ˙̃r ≡ ṽ

)
→ (0, 0)

asymptotically (or exponentially).
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Application to MAV Flight Control
Position Controller

Sliding Mode

Consider the sliding variable

sp , C3r̃ + C4ṽ (47)

where C3 ∈ R3 and C4 ∈ R3 are given positive-definite diagonal matrices.

Therefore, the sliding motion is governed by the LTI system

˙̃r = −C−14 C3r̃ (48)

whose origin r̃ = 0 is clearly exponentially stable.
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Application to MAV Flight Control
Position Controller

Reaching Mode and Control Law

To reach the sliding surface in finite time, we need to choose F̄
c
G so as to

satisfy the sliding condition:

sTp ṡp ≤ −
ηp√

2
‖sp‖ (49)

where ηp ∈ R+ is a given parameter.

For this end, we could adopt the control law

F̄
c
G = mC−14

(
C3ṽ + C4ge3 + C4 ˙̄v

B/G
G − κp

‖C4‖
m

sp
‖sp‖

)
(50)
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Application to MAV Flight Control
Position Controller

where κp must be chosen as

κp = −ρp −
mηp

‖C4‖
√

2
(51)
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Application to MAV Flight Control

Final Comments

It remains to prove the overall stability of the afore-designed flight
control system. One can try to do it using the ISS (input-to-state
stability) analysis.

The disturbance bounds ρa and ρp can be chosen to represent some
modeling and/or parametric errors, besides the torque and force dis-
turbances themselves.

In order to enforce the time-scale separation assumption considered in
the design, note that it is necessary to choose ‖C−14 C3‖ � ‖C−12 C1‖
and ηa � ηp.

It is possible to deal with control torque and force bounds in the SMC
framework 6. However, in the next chapter, we’d better treat control
constraints by a reference filter (or governor).

6See reference [S. Ding, W. X. Zheng. Nonsingular Terminal Sliding Mode Control of
Nonlinear Second-Order Systems with Input Saturation. Int. J. Rob. Nonlin. Cont.,
2016.]
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