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Motivation

Precise Agriculture

The MAV (or MAVs) needs to fly in a path that covers the field of interest.
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Motivation

Remote Sensing in Urban Areas

The MAV (or MAVs) needs to fly in a path that covers the district of interest.
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Motivation

Delivery in Urban Areas

The MAVs have to fly in a path among obstacles.
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Definitions

Configuration Space

It is the set S where the robot can take poses.

Examples:

For a robot with 3 DOFs of rotation and 3 DOFs of translation,
S ⊂ SO(3)× R3.

For a point robot in R2 or R3, S ⊂ R2 or S ⊂ R3, respectively.

 

  

Robot 
Representation 

𝒮  
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Definitions

Obstacle Region

From now on, consider S ⊂ Rd , with d = 2 or d = 3. Assume that each
obstacle is a compact set Oi ⊂ S. The obstacle region is defined as

O ,
no⋃
i=1

Oi (1)

 

  

𝒮  
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Definitions

Free Space

Assume that the MAV is limited inside a ball Bδ(w) with radius δ centered
at its configuration w ∈ S. This ball represents the MAV dimensions. The
free space is defined as

Sfree ,
{

w ∈ S : Bδ(w) ∩ O = ∅ and Bδ(w) ∩ S̄ = ∅
}

(2)

 

  
𝒪1  

𝒪2  

𝒪3  
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𝒪2  

𝒪3  

𝐰 ∈ 𝒮𝑓𝑟𝑒𝑒  
𝐰 ∉ 𝒮𝑓𝑟𝑒𝑒  

10 / 30



Definitions

Feasible Path

Given a starting pose ws ∈ Sfree and a goal pose wg ∈ Sfree , a feasible path
between them is a continuous function σ : [0, 1]→ Rd such that

σ(τ) ∈ Sfree ,∀τ ∈ [0, 1]

σ(0) = ws and σ(1) = wg

In particular, we are interested in piecewise affine paths that can be param-
eterized by a finite sequence of waypoints {wi}, besides ws and wg .

 

  

𝒮  
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Definitions

Path Planning Problem

Consider a path planning scenario Σ , (Sfree ,ws ,wg ). The path planning
problem is

to find a path σ in Sfree , if at least one exists or

to report a failure to find a path in Sfree , if no one exists.
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Definitions

Comments

If Sfree is not connected and ws and wg belong to different components
of Sfree , then (it is clear that) the function σ does not exist.

 

  

𝒮  
𝐰𝑠  

𝐰𝑔  

The path planning problem is hard from the computational point of
view and, therefore, its exact solution is impractical.

The popular alternative is to use a sample to approximately (rather
than exactly) represent Sfree .

The most influential sampling-based approaches are the probabilistic
roadmap (PRM) and the rapidly-exploring random tree (RRT).
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Probabilistic Roadmap

The probabilistic roadmap (PRM) methods are organized in two steps:

Learning: Sfree is randomly sampled and the resulting samples are used
as nodes (or vertices) in a geometric graph, which is built so as to avoid
obstacles.

Search: ws and wg are inserted into the graph and the shortest path
is found.

 

  

𝒮  
𝐰𝑠  
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Probabilistic Roadmap

Probabilistic Roadmap

The aforementioned graph is called probabilistic roadmap and will be de-
noted by G(V ,E ), where V is the set of nodes (random samples) and E is
the set of edges (local paths).

 

  

𝒮  
𝐰𝑠  

𝐰𝑔  

The learning and search steps are detailed in the sequel.
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Probabilistic Roadmap

Learning Step

Consider first the following primitive procedures:

w ← Sampling(S ′) takes a sample w ∈ S ′ from a uniform probability
distribution over S ′.

Vnear ← Near(V ,w, µ) provides the set

Vnear ,
{

w̄ ∈ V : w̄ ∈ Bµ(w), w̄ 6= w
}

Y ← NoCollision(w1,w2) returns Y = true if (the line segment)
(w1,w2) ∈ Sfree and Y = false otherwise.

Vnearest ← Nearest(V ,w, k) provides the set Vnearest , which contains
the k nearest points of V from w.
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Probabilistic Roadmap

Algorithm 1. Learning Step.

Data: Sfree
Result: G(V ,E )

V ← ∅,E ← ∅
for i = 1 : n do

w← Sampling(Sfree)
V (i)← {w}

end
for i = 1 : n do

Vnear ← Near(V ,V (i), µ)
for each w̄ ∈ Vnear do

if (V (i), w̄) 6∈ E and NoCollision(V (i), w̄) then
E ← E ∪

{
(V (i), w̄)

}
end

end

end
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Probabilistic Roadmap

Other Versions

There are many versions of Algorithm 1 trying to reduce its computational
burden. Two of them are obtained by

1 replacing Vnear ← Near(V ,V (i), µ) by Vnearest ← Nearest(V ,V (i), k).

2 checking the points w̄ ∈ Vnear in order of increasing distances to V (i)
and avoiding to include in E the edges that connect V(i) to the same
component of G.
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Probabilistic Roadmap

Comments

If the resulting roadmap has more than one (disconnected) components,
it must be improved before proceeding to the search step.

The disconnection occurs because of the existence of areas with low
sampling probability (e.g., narrow corridors). In fact, there are many
different versions of the PRM aiming at improving sampling in such
regions.
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Probabilistic Roadmap

Search Step

Consider first the following primitive procedures:

w̄← NearestCollisionFree(V ,w) return the nearest point w̄ ∈ V from
w such that (w̄,w) ∈ Sfree .

P ← ShortestPath(G(V ,E ),ws ,wg ) returns the shortest path P ,{
ws ,w1, ...,wnw ,wg

}
of G that connects ws to wg .1

1For example, this procedure can be based on the Dijkstra’s or A* algorithm.
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Probabilistic Roadmap

Algorithm 2. Search Step.

Data: G(V ,E ), ws , wg

Result: P

w1 ← NearestCollisionFree(V ,ws)
w2 ← NearestCollisionFree(V ,wg )

V̄ ← V ∪
{

ws ,wg

}
Ē ← E ∪

{
(w1,ws), (w2,wg )

}
P ← ShortestPath(G(V̄ , Ē ),ws ,wg )
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Probabilistic Roadmap

Comments

Usually, the learning step takes much more time than the search one.
Therefore, the PRM is more suitable for multiple query problems. For
a single shot problem, the next method is a better choice.

After running Algorithm 2, the resulting path P can be smoothed for
eliminating useless motions. A simple post-processing algorithm is (to
try) to replace parts of P containing more than two nodes by a straight
segment.

Assume that Sfree is connected. One can show that if n → ∞ the
probability that Algorithm 1 together with Algorithm 2 will return a
solution is one. One can also show that the probability of failure to
find a path when one exists exponentially decays as n→∞.
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Rapidly-Exploring Random Tree . . .
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Rapidly-Exploring Random Tree

New Scenario

Consider that the path planning problem now has the following scenario:

Σ = (Sfree ,ws ,Wg )

where Wg ⊂ Sfree is a set, rather than a single pose. Therefore, the new
problem is to find a path in Sfree that starts at ws and ends at any point in
Wg .
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Rapidly-Exploring Random Tree

The idea of the Method

In its basic version, the rapidly-exploring random tree (RRT) algorithm in-
crementally builds a tree2 of feasible paths starting from ws . As soon as
the tree enters into Wg , a path is found and the algorithm stops.

 

  

𝒮  

𝒲𝑔  

𝐰𝑠  

2In graph theory, a tree is a connected graph that has no cycles.
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Rapidly-Exploring Random Tree

Algorithm 3. RRT (Original Version)

Data: ws , Wg

Result: G(V ,E )

V ← {ws}, E ← ∅
for i = 1 : n do

w← Sampling(Sfree)
wnearest ← Nearest(V ,w, 1)
wnew ← wnearest + η(w−wnearest)/‖w−wnearest‖ (or wnew ← w)
if NoObstacle(wnearest ,wnew ) then

V ← V ∪ {wnew}
E ← E ∪

{
(wnew ,wnearest)

}
if wnew ∈ Wg then

return G(V ,E )
end

end

end
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Rapidly-Exploring Random Tree

Comments

The RRT methods are primarily aimed at single-query applications.

The growth of the random tree is biased toward the unexplored areas
of Sfree , as verified in the Voronoi diagram:

 

The RRT can also be shown to be probabilistically complete and to
have a probability of failure that dacays exponentially as n→∞ [3].
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