MP-282

Dynamic Modeling and Control of Multirotor Aerial Vehicles Chapter 10: Sampling-Based Path Planning

> Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

> > São José dos Campos - SP 2020

Probabilistic Roadmap

Motivation ...

Precise Agriculture

The MAV (or MAVs) needs to fly in a path that covers the field of interest.

Remote Sensing in Urban Areas

The MAV (or MAVs) needs to fly in a path that covers the district of interest.

Motivation

Delivery in Urban Areas

The MAVs have to fly in a path among obstacles.

Definitions

Configuration Space

It is the set \mathcal{S} where the robot can take poses.

Examples:

- For a robot with 3 DOFs of rotation and 3 DOFs of translation, $\mathcal{S} \subset \mathrm{SO}(3) \times \mathbb{R}^3$.
- For a point robot in \mathbb{R}^2 or \mathbb{R}^3 , $\mathcal{S} \subset \mathbb{R}^2$ or $\mathcal{S} \subset \mathbb{R}^3$, respectively.

Obstacle Region

From now on, consider $S \subset \mathbb{R}^d$, with d = 2 or d = 3. Assume that each obstacle is a compact set $\mathcal{O}_i \subset S$. The obstacle region is defined as

$$\mathcal{O} \triangleq \bigcup_{i=1}^{n_o} \mathcal{O}_i \tag{1}$$

Free Space

Assume that the MAV is limited inside a ball $\mathcal{B}_{\delta}(\mathbf{w})$ with radius δ centered at its configuration $\mathbf{w} \in \mathcal{S}$. This ball represents the MAV dimensions. The free space is defined as

$$\mathcal{S}_{free} \triangleq \left\{ \mathbf{w} \in \mathcal{S} : \mathcal{B}_{\delta}(\mathbf{w}) \cap \mathcal{O} = \emptyset \text{ and } \mathcal{B}_{\delta}(\mathbf{w}) \cap \bar{\mathcal{S}} = \emptyset \right\}$$
(2)

Feasible Path

Given a starting pose $\mathbf{w}_s \in S_{free}$ and a goal pose $\mathbf{w}_g \in S_{free}$, a feasible path between them is a continuous function $\boldsymbol{\sigma} : [0,1] \to \mathbb{R}^d$ such that

•
$$\sigma(\tau) \in \mathcal{S}_{free}, \forall \tau \in [0, 1]$$

• $\sigma(0) = \mathbf{w}_s$ and $\sigma(1) = \mathbf{w}_g$

In particular, we are interested in piecewise affine paths that can be parameterized by a finite sequence of waypoints $\{\mathbf{w}_i\}$, besides \mathbf{w}_s and \mathbf{w}_g .

Path Planning Problem

Consider a path planning scenario $\Sigma \triangleq (S_{free}, \mathbf{w}_s, \mathbf{w}_g)$. The path planning problem is

- ullet to find a path σ in $\mathcal{S}_{\mathit{free}},$ if at least one exists or
- to report a failure to find a path in S_{free} , if no one exists.

Comments

 If S_{free} is not connected and w_s and w_g belong to different components of S_{free}, then (it is clear that) the function σ does not exist.

- The path planning problem is hard from the computational point of view and, therefore, its exact solution is impractical.
- The popular alternative is to use a sample to approximately (rather than exactly) represent S_{free} .
- The most influential sampling-based approaches are the probabilistic roadmap (PRM) and the rapidly-exploring random tree (RRT).

Probabilistic Roadmap ...

Probabilistic Roadmap

The probabilistic roadmap (PRM) methods are organized in two steps:

- Learning: S_{free} is randomly sampled and the resulting samples are used as nodes (or vertices) in a geometric graph, which is built so as to avoid obstacles.
- Search: \mathbf{w}_s and \mathbf{w}_g are inserted into the graph and the shortest path is found.

Probabilistic Roadmap

The aforementioned graph is called probabilistic roadmap and will be denoted by $\mathcal{G}(V, E)$, where V is the set of nodes (random samples) and E is the set of edges (local paths).

The learning and search steps are detailed in the sequel.

Learning Step

Consider first the following primitive procedures:

w ← Sampling(S') takes a sample w ∈ S' from a uniform probability distribution over S'.

•
$$V_{near} \leftarrow Near(V, \mathbf{w}, \mu)$$
 provides the set

$$V_{\mathit{near}} riangleq \left\{ ar{\mathbf{w}} \in V : ar{\mathbf{w}} \in \mathcal{B}_{\mu}(\mathbf{w}), ar{\mathbf{w}}
eq \mathbf{w}
ight\}$$

- $Y \leftarrow NoCollision(\mathbf{w}_1, \mathbf{w}_2)$ returns Y = true if (the line segment) $(\mathbf{w}_1, \mathbf{w}_2) \in S_{free}$ and Y = false otherwise.
- V_{nearest} ← Nearest(V, w, k) provides the set V_{nearest}, which contains the k nearest points of V from w.

Probabilistic Roadmap

Algorithm 1. Learning Step.

Data: S_{free} Result: $\mathcal{G}(V, E)$ $V \leftarrow \emptyset, E \leftarrow \emptyset$ for i = 1 : n do $| \mathbf{w} \leftarrow Sampling(S_{free})$ $V(i) \leftarrow \{\mathbf{w}\}$

end

```
for i = 1 : n do

V_{near} \leftarrow Near(V, V(i), \mu)

for each \bar{\mathbf{w}} \in V_{near} do

| if (V(i), \bar{\mathbf{w}}) \notin E and NoCollision(V(i), \bar{\mathbf{w}}) then

| E \leftarrow E \cup \{(V(i), \bar{\mathbf{w}})\}

end

end
```

Other Versions

There are many versions of Algorithm 1 trying to reduce its computational burden. Two of them are obtained by

• replacing $V_{near} \leftarrow Near(V, V(i), \mu)$ by $V_{nearest} \leftarrow Nearest(V, V(i), k)$.

② checking the points $\bar{\mathbf{w}} \in V_{near}$ in order of increasing distances to V(i) and avoiding to include in E the edges that connect V(i) to the same component of G.

Comments

- If the resulting roadmap has more than one (disconnected) components, it must be improved before proceeding to the search step.
- The disconnection occurs because of the existence of areas with low sampling probability (*e.g.*, narrow corridors). In fact, there are many different versions of the PRM aiming at improving sampling in such regions.

Search Step

Consider first the following primitive procedures:

- w̄ ← NearestCollisionFree(V, w) return the nearest point w̄ ∈ V from w such that (w̄, w) ∈ S_{free}.
- $P \leftarrow ShortestPath(\mathcal{G}(V, E), \mathbf{w}_s, \mathbf{w}_g)$ returns the shortest path $P \triangleq \{\mathbf{w}_s, \mathbf{w}_1, ..., \mathbf{w}_{n_w}, \mathbf{w}_g\}$ of \mathcal{G} that connects \mathbf{w}_s to \mathbf{w}_g .¹

¹For example, this procedure can be based on the Dijkstra's or A* algorithm.

Algorithm 2. Search Step.

Data: $\mathcal{G}(V, E)$, \mathbf{w}_s , \mathbf{w}_g Result: P

$$\begin{split} \mathbf{w}_{1} &\leftarrow \textit{NearestCollisionFree}(V, \mathbf{w}_{s}) \\ \mathbf{w}_{2} &\leftarrow \textit{NearestCollisionFree}(V, \mathbf{w}_{g}) \\ \bar{V} &\leftarrow V \cup \{\mathbf{w}_{s}, \mathbf{w}_{g}\} \\ \bar{E} &\leftarrow E \cup \{(\mathbf{w}_{1}, \mathbf{w}_{s}), (\mathbf{w}_{2}, \mathbf{w}_{g})\} \\ P &\leftarrow \textit{ShortestPath}(\mathcal{G}(\bar{V}, \bar{E}), \mathbf{w}_{s}, \mathbf{w}_{g}) \end{split}$$

Comments

- Usually, the learning step takes much more time than the search one. Therefore, the PRM is more suitable for multiple query problems. For a single shot problem, the next method is a better choice.
- After running Algorithm 2, the resulting path *P* can be smoothed for eliminating useless motions. A simple post-processing algorithm is (to try) to replace parts of *P* containing more than two nodes by a straight segment.
- Assume that S_{free} is connected. One can show that if $n \to \infty$ the probability that Algorithm 1 together with Algorithm 2 will return a solution is one. One can also show that the probability of failure to find a path when one exists exponentially decays as $n \to \infty$.

Rapidly-Exploring Random Tree ...

New Scenario

Consider that the path planning problem now has the following scenario:

 $\boldsymbol{\Sigma} = \left(\mathcal{S}_{\textit{free}}, \boldsymbol{w}_{\textit{s}}, \mathcal{W}_{\textit{g}}\right)$

where $\mathcal{W}_g \subset \mathcal{S}_{free}$ is a set, rather than a single pose. Therefore, the new problem is to find a path in \mathcal{S}_{free} that starts at \mathbf{w}_s and ends at any point in \mathcal{W}_g .

The idea of the Method

In its basic version, the rapidly-exploring random tree (RRT) algorithm incrementally builds a tree² of feasible paths starting from \mathbf{w}_s . As soon as the tree enters into \mathcal{W}_g , a path is found and the algorithm stops.

²In graph theory, a tree is a connected graph that has no cycles.

Rapidly-Exploring Random Tree

Algorithm 3. RRT (Original Version)

```
Data: \mathbf{w}_{s}, \mathcal{W}_{\sigma}
Result: \mathcal{G}(V, E)
V \leftarrow \{\mathbf{w}_{s}\}, E \leftarrow \emptyset
for i = 1: n do
       \mathbf{w} \leftarrow Sampling(\mathcal{S}_{free})
       \mathbf{w}_{nearest} \leftarrow Nearest(V, \mathbf{w}, 1)
       \mathbf{w}_{new} \leftarrow \mathbf{w}_{nearest} + \eta (\mathbf{w} - \mathbf{w}_{nearest}) / \|\mathbf{w} - \mathbf{w}_{nearest}\| (\text{or } \mathbf{w}_{new} \leftarrow \mathbf{w})
       if NoObstacle(\mathbf{w}_{nearest}, \mathbf{w}_{new}) then
               V \leftarrow V \cup \{\mathbf{w}_{new}\}
            E \leftarrow E \cup \{(\mathbf{w}_{new}, \mathbf{w}_{nearest})\}
             if \mathbf{w}_{new} \in \mathcal{W}_{g} then
               return \mathcal{G}(V, E)
               end
       end
end
```

Rapidly-Exploring Random Tree

Comments

- The RRT methods are primarily aimed at single-query applications.
- The growth of the random tree is biased toward the unexplored areas of S_{free} , as verified in the Voronoi diagram:

 The RRT can also be shown to be probabilistically complete and to have a probability of failure that dacays exponentially as n → ∞ [3].

References . . .

S. M. LaValle. Planning Algorithm. Cambridge University Press, 2006.

- H. Choset. Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, 2005.
- S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846–894, 2011.