Dynamic Modeling and Control of Multirotor Aerial Vehicles

Chapter 10: Sampling-Based Path Planning

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

São José dos Campos - SP 2020

Contents

(1) Motivation
(2) Definitions
(3) Probabilistic Roadmap
(4) Rapidly-Exploring Random Tree

Motivation ...

Motivation

Precise Agriculture

The MAV (or MAVs) needs to fly in a path that covers the field of interest.

Motivation

Remote Sensing in Urban Areas

The MAV (or MAVs) needs to fly in a path that covers the district of interest.

Motivation

Delivery in Urban Areas

The MAVs have to fly in a path among obstacles.

Definitions ...

Definitions

Configuration Space

It is the set \mathcal{S} where the robot can take poses.

Examples:

- For a robot with 3 DOFs of rotation and 3 DOFs of translation, $\mathcal{S} \subset \mathrm{SO}(3) \times \mathbb{R}^{3}$.
- For a point robot in \mathbb{R}^{2} or \mathbb{R}^{3}, $\mathcal{S} \subset \mathbb{R}^{2}$ or $\mathcal{S} \subset \mathbb{R}^{3}$, respectively.

Definitions

Obstacle Region

From now on, consider $\mathcal{S} \subset \mathbb{R}^{d}$, with $d=2$ or $d=3$. Assume that each obstacle is a compact set $\mathcal{O}_{i} \subset \mathcal{S}$. The obstacle region is defined as

$$
\begin{equation*}
\mathcal{O} \triangleq \bigcup_{i=1}^{n_{0}} \mathcal{O}_{i} \tag{1}
\end{equation*}
$$

Definitions

Free Space

Assume that the MAV is limited inside a ball $\mathcal{B}_{\delta}(\mathbf{w})$ with radius δ centered at its configuration $\mathbf{w} \in \mathcal{S}$. This ball represents the MAV dimensions. The free space is defined as

$$
\begin{equation*}
\mathcal{S}_{\text {free }} \triangleq\left\{\mathbf{w} \in \mathcal{S}: \mathcal{B}_{\delta}(\mathbf{w}) \cap \mathcal{O}=\emptyset \quad \text { and } \quad \mathcal{B}_{\delta}(\mathbf{w}) \cap \overline{\mathcal{S}}=\emptyset\right\} \tag{2}
\end{equation*}
$$

Definitions

Feasible Path

Given a starting pose $\mathbf{w}_{s} \in \mathcal{S}_{\text {free }}$ and a goal pose $\mathbf{w}_{g} \in \mathcal{S}_{\text {free }}$, a feasible path between them is a continuous function $\sigma:[0,1] \rightarrow \mathbb{R}^{d}$ such that

- $\boldsymbol{\sigma}(\tau) \in \mathcal{S}_{\text {free }}, \forall \tau \in[0,1]$
- $\sigma(0)=\mathbf{w}_{s}$ and $\sigma(1)=\mathbf{w}_{g}$

In particular, we are interested in piecewise affine paths that can be parameterized by a finite sequence of waypoints $\left\{\mathbf{w}_{i}\right\}$, besides \mathbf{w}_{s} and \mathbf{w}_{g}.

Definitions

Path Planning Problem

Consider a path planning scenario $\Sigma \triangleq\left(\mathcal{S}_{\text {free }}, \mathbf{w}_{s}, \mathbf{w}_{g}\right)$. The path planning problem is

- to find a path $\boldsymbol{\sigma}$ in $\mathcal{S}_{\text {free }}$, if at least one exists or
- to report a failure to find a path in $\mathcal{S}_{\text {free }}$, if no one exists.

Definitions

Comments

- If $\mathcal{S}_{\text {free }}$ is not connected and \mathbf{w}_{s} and \mathbf{w}_{g} belong to different components of $\mathcal{S}_{\text {free }}$, then (it is clear that) the function σ does not exist.

δ
- The path planning problem is hard from the computational point of view and, therefore, its exact solution is impractical.
- The popular alternative is to use a sample to approximately (rather than exactly) represent $\mathcal{S}_{\text {free }}$.
- The most influential sampling-based approaches are the probabilistic roadmap (PRM) and the rapidly-exploring random tree (RRT).

Probabilistic Roadmap ...

Probabilistic Roadmap

The probabilistic roadmap (PRM) methods are organized in two steps:

- Learning: $\mathcal{S}_{\text {free }}$ is randomly sampled and the resulting samples are used as nodes (or vertices) in a geometric graph, which is built so as to avoid obstacles.
- Search: \mathbf{w}_{s} and \mathbf{w}_{g} are inserted into the graph and the shortest path is found.

Probabilistic Roadmap

Probabilistic Roadmap

The aforementioned graph is called probabilistic roadmap and will be denoted by $\mathcal{G}(V, E)$, where V is the set of nodes (random samples) and E is the set of edges (local paths).

The learning and search steps are detailed in the sequel.

Probabilistic Roadmap

Learning Step

Consider first the following primitive procedures:

- $\mathbf{w} \leftarrow \operatorname{Sampling}\left(\mathcal{S}^{\prime}\right)$ takes a sample $\mathbf{w} \in \mathcal{S}^{\prime}$ from a uniform probability distribution over \mathcal{S}^{\prime}.
- $V_{\text {near }} \leftarrow \operatorname{Near}(V, \mathbf{w}, \mu)$ provides the set

$$
V_{\text {near }} \triangleq\left\{\overline{\mathbf{w}} \in V: \overline{\mathbf{w}} \in \mathcal{B}_{\mu}(\mathbf{w}), \overline{\mathbf{w}} \neq \mathbf{w}\right\}
$$

- $Y \leftarrow$ NoCollision $\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right)$ returns $Y=$ true if (the line segment) $\left(\mathbf{w}_{1}, \mathbf{w}_{2}\right) \in \mathcal{S}_{\text {free }}$ and $Y=$ false otherwise.
- $V_{\text {nearest }} \leftarrow \operatorname{Nearest}(V, \mathbf{w}, k)$ provides the set $V_{\text {nearest }}$, which contains the k nearest points of V from \mathbf{w}.

Probabilistic Roadmap

Algorithm 1. Learning Step.
Data: $\mathcal{S}_{\text {free }}$
Result: $\mathcal{G}(V, E)$
$V \leftarrow \emptyset, E \leftarrow \emptyset$
for $i=1: n$ do $\mathbf{w} \leftarrow$ Sampling $\left(\mathcal{S}_{\text {free }}\right)$
$V(i) \leftarrow\{\mathbf{w}\}$
end
for $i=1: n$ do
$V_{\text {near }} \leftarrow \operatorname{Near}(V, V(i), \mu)$
for each $\overline{\mathbf{w}} \in V_{\text {near }}$ do
if $(V(i), \overline{\mathbf{w}}) \notin E$ and NoCollision $(V(i), \overline{\mathbf{w}})$ then $E \leftarrow E \cup\{(V(i), \overline{\mathbf{w}})\}$
end
end
end

Probabilistic Roadmap

Other Versions

There are many versions of Algorithm 1 trying to reduce its computational burden. Two of them are obtained by
(1) replacing $V_{\text {near }} \leftarrow \operatorname{Near}(V, V(i), \mu)$ by $V_{\text {nearest }} \leftarrow \operatorname{Nearest}(V, V(i), k)$.
(2) checking the points $\overline{\mathbf{w}} \in V_{\text {near }}$ in order of increasing distances to $V(i)$ and avoiding to include in E the edges that connect $\mathrm{V}(\mathrm{i})$ to the same component of \mathcal{G}.

Probabilistic Roadmap

Comments

- If the resulting roadmap has more than one (disconnected) components, it must be improved before proceeding to the search step.
- The disconnection occurs because of the existence of areas with low sampling probability (e.g., narrow corridors). In fact, there are many different versions of the PRM aiming at improving sampling in such regions.

Probabilistic Roadmap

Search Step

Consider first the following primitive procedures:

- $\overline{\mathbf{w}} \leftarrow$ NearestCollisionFree (V, \mathbf{w}) return the nearest point $\overline{\mathbf{w}} \in V$ from \mathbf{w} such that $(\overline{\mathbf{w}}, \mathbf{w}) \in \mathcal{S}_{\text {free }}$.
- $P \leftarrow \operatorname{ShortestPath}\left(\mathcal{G}(V, E), \mathbf{w}_{s}, \mathbf{w}_{g}\right)$ returns the shortest path $P \triangleq$ $\left\{\mathbf{w}_{s}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{n_{w}}, \mathbf{w}_{g}\right\}$ of \mathcal{G} that connects \mathbf{w}_{s} to $\mathbf{w}_{g} .{ }^{1}$

[^0]
Probabilistic Roadmap

Algorithm 2. Search Step.

Data: $\mathcal{G}(V, E), \mathbf{w}_{s}, \mathbf{w}_{g}$ Result: P
$\mathbf{w}_{1} \leftarrow \operatorname{NearestCollisionFree}\left(V, \mathbf{w}_{s}\right)$ $\mathbf{w}_{2} \leftarrow$ NearestCollisionFree $\left(V, \mathbf{w}_{g}\right)$
$\bar{V} \leftarrow V \cup\left\{\mathbf{w}_{s}, \mathbf{w}_{g}\right\}$
$\bar{E} \leftarrow E \cup\left\{\left(\mathbf{w}_{1}, \mathbf{w}_{s}\right),\left(\mathbf{w}_{2}, \mathbf{w}_{g}\right)\right\}$
$P \leftarrow \operatorname{ShortestPath}\left(\mathcal{G}(\bar{V}, \bar{E}), \mathbf{w}_{s}, \mathbf{w}_{g}\right)$

Probabilistic Roadmap

Comments

- Usually, the learning step takes much more time than the search one. Therefore, the PRM is more suitable for multiple query problems. For a single shot problem, the next method is a better choice.
- After running Algorithm 2, the resulting path P can be smoothed for eliminating useless motions. A simple post-processing algorithm is (to try) to replace parts of P containing more than two nodes by a straight segment.
- Assume that $\mathcal{S}_{\text {free }}$ is connected. One can show that if $n \rightarrow \infty$ the probability that Algorithm 1 together with Algorithm 2 will return a solution is one. One can also show that the probability of failure to find a path when one exists exponentially decays as $n \rightarrow \infty$.

Rapidly-Exploring Random Tree ...

Rapidly-Exploring Random Tree

New Scenario

Consider that the path planning problem now has the following scenario:

$$
\Sigma=\left(\mathcal{S}_{\text {free }}, \mathbf{w}_{s}, \mathcal{W}_{g}\right)
$$

where $\mathcal{W}_{g} \subset \mathcal{S}_{f r e e}$ is a set, rather than a single pose. Therefore, the new problem is to find a path in $\mathcal{S}_{\text {free }}$ that starts at \mathbf{w}_{s} and ends at any point in \mathcal{W}_{g}.

Rapidly-Exploring Random Tree

The idea of the Method

In its basic version, the rapidly-exploring random tree (RRT) algorithm incrementally builds a tree ${ }^{2}$ of feasible paths starting from \mathbf{w}_{s}. As soon as the tree enters into \mathcal{W}_{g}, a path is found and the algorithm stops.

[^1]
Rapidly-Exploring Random Tree

Algorithm 3. RRT (Original Version)

```
Data: w
Result: \mathcal{G }V,E)
V\leftarrow{\mp@subsup{\mathbf{w}}{s}{}},E\leftarrow\emptyset
for i=1: n do
    w}\leftarrow\mathrm{ Sampling( (Sfree}
    \mp@subsup{\mathbf{w}}{\mathrm{ nearest }}{}\leftarrowNearest(V,\mathbf{w},1)
    \mp@subsup{\mathbf{w}}{\mathrm{ new }}{}\leftarrow\mp@subsup{\mathbf{w}}{\mathrm{ nearest }}{}+\eta(\mathbf{w}-\mp@subsup{\mathbf{w}}{\mathrm{ nearest }}{})/|\mathbf{w}-\mp@subsup{\mathbf{w}}{\mathrm{ nearest }}{}|(\mathrm{ or w}
    if NoObstacle( }\mp@subsup{\mathbf{w}}{\mathrm{ nearest }}{},\mp@subsup{\mathbf{w}}{\mathrm{ new }}{})\mathrm{ then
        V\leftarrowV\cup{\mp@subsup{\mathbf{w}}{\mathrm{ new }}{}}
        E\leftarrowE\cup{(\mp@subsup{\mathbf{w}}{\mathrm{ new }}{},\mp@subsup{\mathbf{w}}{\mathrm{ nearest }}{})}
        if \mp@subsup{\mathbf{w}}{\mathrm{ new }}{}\in\mp@subsup{\mathcal{W}}{g}{}\mathrm{ then}
        return \mathcal{G}}(V,E
        end
    end
end
```


Rapidly-Exploring Random Tree

Comments

- The RRT methods are primarily aimed at single-query applications.
- The growth of the random tree is biased toward the unexplored areas of $\mathcal{S}_{\text {free }}$, as verified in the Voronoi diagram:

- The RRT can also be shown to be probabilistically complete and to have a probability of failure that dacays exponentially as $n \rightarrow \infty$ [3].

References

References

嗇 S. M. LaValle. Planning Algorithm. Cambridge University Press, 2006.
E H. Choset. Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, 2005.

E S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846-894, 2011.

[^0]: ${ }^{1}$ For example, this procedure can be based on the Dijkstra's or A* algorithm.

[^1]: ${ }^{2}$ In graph theory, a tree is a connected graph that has no cycles.

