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Instituto Tecnológico de Aeronáutica
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Introduction

What is guidance?

Cambridge Dictionary: “The process of directing the flight of a missile
or rocket”.

Oxford Dictionary: “The directing of the motion or position of some-
thing, especially an aircraft, spacecraft or missile”.
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Introduction

Missile Guidance

Consider the illustrated scenario:
 

LOS 

𝑉𝑀 
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𝛼𝑇 

Proportional Navigation is a classical method of missile guidance. It provides
the following lateral acceleration (command):

aM = κ‖VM‖θ̇ (1)

where κ is a proportionality factor.
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Introduction

...Missile Guidance

Therefore, we see that the afore-presented dictionary definitions are very
consistent with the classical notion of missile or rocket guidance!

What about MAV guidance?!
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Introduction

MAV Guidance

Considering a fixed-rotor MAV, the implementation idea is illustrated below.
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Definitions

Waypoint

A waypoint is a vector wi , (ri , ψi ) ∈ R4 composed by a reference position
ri ∈ R3 and a reference heading ψi ∈ R, both w.r.t. SG. The vector ri is
an SG representation.

Wayset

A wayset Wi associated with wi is a neighborhood of wi , i.e.,

Wi ,
{

w = (r, ψ) ∈ R3 × R : ‖r− ri‖ ≤ ρr , |ψ − ψi | ≤ ρψ
}
, (2)

where ρr ∈ R>0 and ρψ ∈ R>0 are given parameters.
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Definitions

MAV Guidance

It is the process of commanding the MAV flight control system with a time-
varying command

c : R→ R4 (3)

t 7→ c(t) (4)

c(t) ,
(

r̄
B/G
G (t), ψ̄(t)

)
(5)

so as to make it visit each wayset of a given sequence {Wi , i = 1, . . . , f } 1.

It seems to agree with the Oxford definition, except that here we have
included the heading command and the wayset concept.

1Later, in Model Based Methods, our guidance problem will be also concerned with
command feasibility.
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Definitions

... MAV Guidance

Here we have an illustration:
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Basic Methods

Overview

Here we have a simplified block diagram (compared with the one in slide
7) representing the interaction between the flight control system and the
guidance module.

 

 

{𝒲𝑖} 

{𝐰𝑖} 
Guidance MAV + FCS 

𝐜 𝑡  

𝐫G
B/G

,𝜓, … 

Note however that, different from slide 7, now we are not particularly con-
cerned with fixed-rotor MAVs.
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Basic Methods
Brute Force

Idea

In the brute force method, the command c(t) is set equal to the current
reference waypoint, i.e., the guidance law is simply c(t) = wi .

Algorithm 1:

Data: {Wi}, {wi}

i ← 1, f ← card
(
{wi}

)
for k = 1 : end do

c(k)← wi

write(c(k),toFCS)

read(r
B/G
G , ψ,fromFCS)

if (r
B/G
G , ψ) ∈ Wi and i < f then

i ← i + 1
end

end
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Basic Methods
Brute Force

Remark: The above guidance algorithm will probably give rise to a very
aggressive motion and there is nothing there to prevent saturations or con-
straint violations.
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Basic Methods
Low-Pass Filter

Idea

Now the current waypoint wi is not directly applied to the command c.
Instead, it is filtered by the following (discrete-time) low-pass filter:

c(k + 1) = (I4 −Λ)c(k) + Λwi (6)

where

c(1) ≡
(

r
B/G
G , ψ

)
(t)

Λ , diagλ

λ , (λ1, λ2, λ3, λ4)

Considering (6) as an Euler time discretization of a 1st order LPF, we have
λj = T/τj , where T is the sampling time and τj is a time constant.
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Basic Methods
Low-Pass Filter

Algorithm 2:

Data: {Wi}, {wi}, Λ

i ← 1, f ← card
(
{wi}

)
read(r

B/G
G , ψ,fromFCS)

c(0)←
(

r
B/G
G , ψ

)
for k = 1 : end do

c(k)← (I4 −Λ)c(k − 1) + Λwi

write(c(k),toFCS)

read(r
B/G
G , ψ,fromFCS)

if (r
B/G
G , ψ) ∈ Wi and i < f then

i ← i + 1
end

end
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Basic Methods
Low-Pass Filter

Remark:

Note that if we set λi = 0, ∀i , the MAV will remain at the same pose,
independent of the value of wi . This is the least aggressive pose command.
On the other hand, if λi = 1, ∀i , then Algorithm 2 coincides with the brute
force method, which provides the most aggressive command.
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Scenario Modeling

Dynamic Model

In case the position control law is like the one presented in Chapter 6, the
closed-loop flight control system can be described by

x(k + 1) = Ax(k) + Bc(k) (7)

where x ,
(

r
B/G
G , v

B/G
G , ψ, ψ̇

)
∈ R8, and A ∈ R8×8 and B ∈ R8×4 are

known matrices. We can alternatively express the dynamics of each DOF
by

xj(k + 1) = Ajxj(k) + Bjcj(k), j = 1, ..., 4 (8)

where xj ,
(

eTj r
B/G
G , eTj v

B/G
G

)
∈ R2, for j = 1, . . . , 3, x4 ,

(
ψ, ψ̇

)
∈ R2,

and Aj ∈ R2×2 and Bj ∈ R2×1 are known matrices.

20 / 44



Scenario Modeling

Flight Space

It can be represented by

Sx(k) ∈ S, ∀k (9)

where S ⊂ R4 is a known compact set and

S ,

[
I3 03×3 0 0

01×3 01×3 1 0

]
∈ R4×8 (10)
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Scenario Modeling

If there exist obstacles, they can be represented by

Srx(k) 6∈ O ,
no⋃
l=1

Ol , ∀k (11)

where each Ol ⊂ R3 is a compact set representing one particular obstacle
and

Sr ,
[

I3 03×3 0 0
]
∈ R3×8 (12)
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Scenario Modeling

Velocity Bounds

It can be represented by

Vx(k) ∈ V, ∀k (13)

where V ⊂ R4 is a known compact set (usually symmetric with respect to
the origin) and

V ,

[
03×3 I3 0 0
01×3 01×3 0 1

]
∈ R4×8 (14)
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Scenario Modeling

Terminal Set

An important requirement to the guidance law is that after a number N ∈
Z>0 of discrete-time steps, the output y ,

(
r
B/G
G , ψ

)
∈ R4 must be inside

the currently active wayset Wi , i.e.,

Sx(N) ∈ Wi , (15)

where S is defined in equation (10).
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Scenario Modeling

Force Command Bounds

Suppose that the flight control system respects the time-scale separation
assumption, it has no active saturation, and its position control law is given
by (see Chapter 6)

F̄
c
G = m

(
K1

(
r̄
B/G
G − r

B/G
G

)
−K2v

B/G
G + ge3

)
(16)

On the other hand, consider that F̄
c
G is required to satisfy F̄

c
G ∈ F , where

F ⊂ R3 is a given compact set. Therefore, we obtain the constraint

F1x(k) + F2c(k) ∈ F 	mge3, ∀k (17)

where

F1 , −
[
mK1 mK2 03×2

]
(18)

F2 ,
[
mK1 03×1

]
(19)
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Model Based Methods
Optimal Low-Pass Filter

The optimal low-pass filter method can be formulated as

max
λj∈[0,1],j=1,...,4

λ1 + λ2 + λ3 + λ4

s.t., for k = 1, ...,N,

x(k + 1) = Ax(k) + Bc(k), x(1) ≡ x̌

c(k + 1) = (I4 −Λ)c(k) + Λwi , c(1) ≡ Sx̌

Sx(k) ∈ S, Srx(k) 6∈ O
Vx(k) ∈ V
F1x(k) + F2c(k) ∈ F 	mge3

Sx(N) ∈ Wi

Remark: Assume that the sets S,V,F ,Wi are boxes with the sides parallel
to the coordinate axes. For simplicity, consider the absence of obstacles. In
this scenario, the above problem can be replaced by the four scalar opti-
mizations presented in the sequel.
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Model Based Methods
Optimal Low-Pass Filter

For j = 1, 2, 3, consider the following scalar optimization:

max
λj∈[0,1]

λj

s.t., for k = 1, ...,N,

xj(k + 1) = Ajxj(k) + Bjcj(k), xj(1) ≡ x̌j

cj(k + 1) = (1− λj)cj(k) + λjwij , cj(1) = eT1 x̌j

eT1 xj(k) ∈ Sj
eT2 xj(k) ∈ Vj
eT1
(
F1x(k) + F2c(k)

)
∈ Fj 	 Ij=3mg

eT1 xj(N) ∈ Wij

where Ij=3 is an indicator function, wij represents the jth component of
wi , and Wij , Sj , Vj , and Fj are the projections of Wi , S, V, and F on
appropriate subspaces.
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Model Based Methods
Optimal Low-Pass Filter

On the other hand, for j = 4, consider the following scalar optimization:

max
λj∈[0,1]

λj

s.t., for k = 1, ...,N,

xj(k + 1) = Ajxj(k) + Bjcj(k), xj(1) ≡ x̌j

cj(k + 1) = (1− λj)cj(k) + λjwij , cj(1) = eT1 x̌j

eT1 xj(k) ∈ Sj
eT2 xj(k) ∈ Vj
eT1 xj(N) ∈ Wij

Remark: The above scalar optimization problems can be simply solved by
the bisection method.
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Model Based Methods
Optimal Low-Pass Filter

Algorithm 3:

Data: {Wi}, {wi}, N, etc.

i ← 1, f ← card
(
{wi}

)
, read(x̌,fromFCS)

c(0)← Sx̌, Λ∗i ← optimalLPF (N, i , x̌)
for k = 1 : end do

c(k)← (I4 −Λ∗i )c(k − 1) + Λ∗i wi

write(c(k),toFCS)
read(x̌,fromFCS)
if Sx̌ ∈ Wi and i < f then

i ← i + 1
Λ∗i ← optimalLPF (N, i , x̌)
c(k)← Sx̌

end

end
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Model Based Methods
Direct Optimization

Idea

In the direct optimization method, an optimal command sequence
{

c∗(k)
}

can be directly obtained by solving the problem below.

min
{c(k)},{x(k)}

J
(

wi ;
{

c(k)
}
,
{

x(k)
})

s.t. ∀k,
x(k + 1) = Ax(k) + Bc(k), x(1) ≡ x̌

Sx(k) ∈ S, Srx(k) 6∈ O
Vx(k) ∈ V
F1x(k) + F2c(k) ∈ F 	mge3

Sx(N) ∈ Wi
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Model Based Methods
Direct Optimization

Assuming that there is no obstacle in the scenario and specifying the problem
sets as

S ,
{

(r, ψ) ∈ R4 : rmin ≤ r ≤ rmax, ψmin ≤ ψ ≤ ψmax

}
(20)

V ,
{
ν ∈ R4 : −νmax ≤ ν ≤ νmax

}
(21)

F ,
{

f ∈ R3 : Fmin ≤ f ≤ Fmax,
}

(22)

Wi ,
{

w ∈ R4 : w = wi + w̃,−wmax ≤ w̃ ≤ wmax

}
(23)

and the cost function as

J
(

wi ;
{

c(k)
}
,
{

x(k)
})

,
1

2

N−1∑
k=1

(
‖Sx(k)−wi‖2Q1

+ ‖c(k)‖2Q2

)
+

1

2
‖Sx(N)−wi‖2Q3

(24)

...
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Model Based Methods
Direct Optimization

... the above problem can be rewritten in the form:

min
C

1

2
CTQC + fTC (25)

s.t.

ΓC ≤ γ (26)

Remark: The above optimization is a quadratic program. Its solution can be
obtained efficiently using active-set or interior-point methods. In MATLAB,
one can use the command quadprog.

Let us present a constructive proof (on the black board)...
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Model Based Methods
Direct Optimization

Prediction Model

Define the extended input and state vectors

C , (c(1), c(2), . . . , c(N − 1)) (27)

X , (x(1), x(2), . . . , x(N)) (28)

Using equatin (7), we can express

X = Ax̌ + BC (29)

where

A ,


I8
A
...

AN−1

 ∈ R8N×8, B ,


0 . . . 0
B . . . 0
...

...
...

AN−2B . . . B

 ∈ R8N×4(N−1)
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Model Based Methods
Direct Optimization

Cost Function

We can transform (24) into (25) with

Q , BTQ+
1 B + diagN−1 Q2 (30)

fT , x̌TATQ+
1 B − fT1 B (31)

where 2

Q+
1 , diag

(
diagN−1 STQ1S,STQ3S

)
f1 ,

 [STQ1wi

]
N−1

STQ3wi


2Consider some a ∈ Rn and some A ∈ Rn×n. Then, [a]L ∈ RnL denotes an extended

vector constructed with stacked copies of a, while diagL A ∈ RnL×nL denotes a block
diagonal matrix with L blocks equal to A.
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Model Based Methods
Direct Optimization

Flight Space

Using (20) and (29), equation (9) can be converted into

S++BC ≤

[
rmax

ψmax

]
N

− S++Ax̌ (32)

−S++BC ≤ −

[
rmin

ψmin

]
N

+ S++Ax̌ (33)

where

S++ , diag (S, . . . ,S) ∈ R4N×8N (34)
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Model Based Methods
Direct Optimization

Velocity bounds

Using (21) and (29), equation (13) can be converted into

V+BC ≤ [νmax]N − V+Ax̌ (35)

−V+BC ≤ [νmax]N + V+Ax̌ (36)

where

V+ , diag (V, . . . ,V) ∈ R4N×8N (37)
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Model Based Methods
Direct Optimization

Force bounds

Using (22) and (29), equation (17) can be converted into

(
F+
1 B + F+

2

)
C ≤ [Fmax −mge3]N − F+

1 Ax̌ (38)

−
(

F+
1 B + F+

2

)
C ≤ − [Fmin −mge3]N + F+

1 Ax̌ (39)

where

F+
1 ,

[
diag (F1, . . . ,F1) 03(N−1)×8

]
∈ R3(N−1)×8N (40)

F+
2 , diag (F2, . . . ,F2) ∈ R3(N−1)×4(N−1) (41)
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Model Based Methods
Direct Optimization

Terminal Set

Using (23) and (29), equation (15) can be converted into

M1BC ≤ wi + wmax −M1Ax̌ (42)

−M1BC ≤ −wi + wmax + M1Ax̌ (43)

where

M1 , [04×8 . . . 04×8 S] ∈ R4×8N (44)

Finally, by stacking the inequalities (37),(38),(40),(41),(43),(44),(47),(48),
we can immediately obtain (26).
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Model Based Methods
Direct Optimization

Algorithm 4:

Data: {Wi}, {wi}, N, etc.

i ← 0, f ← card
(
{wi}

)
, read(x̌,fromFCS){

c∗(j)
}N−1
j=1
← DO(N, i , x̌)

for k = 1 : end do
write(c∗(k),toFCS)
if k = i(N − 1) and i < f then

i ← i + 1
read(x̌,fromFCS){

c∗(j)
}i(N−1)
j=(i−1)N+1

← DO(N, i , x̌)

end
if k ≥ fN then

c(k) = c(k − 1)
end

end
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Model Based Methods
Direct Optimization

Comment:

The direct optimization method is based on an open-loop optimization in
which only the initial condition x̌ is fed back into the guidance module. Note
that, during the flight, any disturbance could prevent the system output y to
reachWi in N discrete-time steps, making Algorithm 4 inapropriate (why?).

A form of robustifying the above algorithm is to implement it in closed
loop by means of the receding horizon strategy: at each time iteration k,

read the system state x̌(k), solve the open-loop optimization
{

c∗(j)
}N−1
j=1
←

DO(N, i , x̌(k)), get only the first optimal command of the sequence c(k)←
c∗(1) and apply it to the flight control system. The resulting algorithm is
an example of model predictive control (MPC) formulation 3.

3See reference [1] for a basic introduction to MPC.
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Model Based Methods
Direct Optimization

Algorithm 5: MPC formulation of reference [2].

Data: {Wi}, {wi}, N, etc.

i ← 0, f ← card
(
{wi}

)
for k = 1 : end do

read(x̌(k),fromFCS){
c∗(j)

}N−1
j=1
← DO(N, i , x̌(k))

c(k)← c∗(1)

write(c(k),toFCS)

if x̌(k) ∈ Wi and i < f then
i ← i + 1

end

end
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