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Preliminary Defintions: What is filtering?

In classical signal processing:

Filtering is to separate signal and noise by their frequency.

 

≈ 𝑠(𝑡) 𝑠(𝑡) + 𝑟(𝑡) 
Filter 

Examples:

Low-pass filter, high-pass filter, band-pass filter, and band-rejection filter.

4 / 20



Preliminary Definitions: What is filtering?

In statistical signal processing:

Filtering is to separate signal from noise by their statistical properties. We
are interested in this type of filtering!

 

≈ 𝑠(𝑡) 𝑠(𝑡) + 𝑟(𝑡) 
Filter 

≈ 𝑠(𝑡) ℎ(𝑠(𝑡), 𝑟(𝑡)) 
Filter 

Examples:

Wiener filter, Kolmogorov filter, Kalman filter, Bucy filter, etc.
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Preliminary Definitions: What is filtering?

Three types of state estimation: prediction, filtering, and smoothing...

 

time 
Prediction 

 

time 
Filtering 

 

time 
Smoothing 
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Preliminary Definitions: Why optimal?

Optimal design of filters:

In engineering, we are always interested in optimal solutions.

We are looking for optimality in the following alternative senses:

Minimum mean square error (MMSE).

Maximum a posteriori probability (MAP).

Least squares (LS).

Maximum likelihood (ML).
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History

The Optimal Filtering Theory has been constructed in the following se-
quence:

1795: Johann Carl Friedrich Gauss devised the Least-Squares method
for estimating the Ceres’ orbit.

1940’s: Wiener/Kolmogorov Filter to separate signal from noise using
the MMSE criterion. They used a frequency-domain approach.

1950’s: Attempts to extend Wiener/Kolmogorov filters for non-stationary
and multivariate signals.

1960: Kalman-Bucy Filter was introduced as the new approach to
tackle and extend the Weiner and Kolmogorov problems for non-stationary
and multivariate signals.

1960-1970: Numerous applications in satellite orbit determination as
well as in attitude determination and navigation of aircraft, ship, rocket,
etc.
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History

1960-1970: Optimal Nonlinear Filtering developed mainly by Strato-
novich (Russia) and consolidated by Kushner (EUA).

1990-2010: Particle Filters or sequential Monte Carlo methods.

1990-2010: More approximations of the Kalman filter for nonlinear
systems: unscented Kalman filter, cubature Kalman filter, ensemble
Kalman filter, etc.

2010-: Some hybrid schemes involving Kalman filter and machine learn-
ing.
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Aerospace Applications

Regarding the dynamic nature of the quantity we want to estimate, we can
distinguish between two types of estimation:

Parameter estimation: the parameters are quantities that characterize
the system of interest. Their values are assumed to be constant or
smoothly time-varying.

State estimation: The states are time-varying signals that describe the
system dynamics.
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Aerospace Applications

Image-Based Attitude Determination:

The three-dimensional attitude of an aerospace vehicle can be determined
by optimal filtering using: (1) an attitude kinematic model together with
rate-gyro measurements; (2) a set of vector measurements; (3) a map of
landmarks; and (4) estimates/measurements of the vehicle’s position.

              

 

𝑂 
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Aerospace Applications

Image-Based Navigation:

The navigation (position, velocity, and attitude estimation) of an aerospace
vehicle can be realized by optimal filtering using: (1) position, velocity, and
attitude kinematic models together with measurements taken from rate-
gyros and accelerometers; (2) a set of measurements of landmark relative
positions; and (3) a map of landmarks.

 

 
𝑟Ԧ𝑝/𝑔 

𝑣Ԧ𝑝/𝑔 

𝜓 

𝒮𝑝 sensor box 

𝒮𝑔 
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Aerospace Applications

Image-Based Object Tracking:

An object can be tracked by optimal filtering from an aerial vehicle equipped
with a navigation (localization) system and a camera. For this end, it is
necessary to know: (1) a kinematic model for describing the object motion;
(2) measurements of the object relative position.

 

 

𝑟Ԧ𝑐/𝑏 

𝒮𝑔 

𝑟Ԧ𝑏/𝑔 

𝑟Ԧ𝑐/𝑔 

camera 
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Aerospace Applications

In aerospace systems, the most frequent applications of parameter estima-
tion are:

Calibration of navigation sensors.

System identification.
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An Warm-up Example

Height and Vertical Velocity Estimation:

Consider a multirotor aerial vehicle (MAV) equipped with an ultrasonic sen-
sor for measuring its height hk at each discrete-time instant k. Assume that
the sensor is noise-free and denote the variable representing its measure at
k > 0 by yk . Consider a sampling period of T = 0.1 s.

1 Obtain a dynamic model of the plant in a discrete-time state-space
representation.

2 Design a discrete-time Luenberger observer, with eigenvalues λ1 = 0.1
and λ2 = 0.1, for estimating the height hk and the vertical velocity ḣk
using yk , k > 0.

3 Implement and test the designed observer using a MATLAB script.
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