Optimal Filtering with Aerospace Applications Chapter 10: Navigation Using a Visual Fiducial System and Inertial Measurements

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

São José dos Campos - SP 2024

Contents

(1) Notation and Preliminary Definitions
(2) Kinematic Equations
(3) Sensor Modeling

4 Problem Statement
(5) Problem Solution

Notation and preliminaries ...

Notation and Preliminary Definitions

Geometric Vectors and Cartesian Coordinate Systems

- \vec{a} : geometric (or physical) vector
- â: unit geometric (physical) vector
- $\mathcal{S}_{\mathrm{B}} \triangleq\left\{B ; \hat{\mathrm{x}}_{\mathrm{B}}, \hat{y}_{\mathrm{B}}, \hat{z}_{\mathrm{B}}\right\}$: body Cartesian coordinate system (CCS)
- $\mathcal{S}_{\mathrm{G}} \triangleq\left\{G ; \hat{x}_{G}, \hat{y}_{G}, \hat{z}_{G}\right\}$: ground CCS

Notation and Preliminary Definitions

Algebraic Vectors and Attitude Matrices

- \mathbf{a}_{B} : representation of \vec{a} in \mathcal{S}_{B} (algebraic vector); $\mathbf{a}_{\mathrm{B}} \in \mathbb{R}^{3}$
- \mathbf{a}_{G} : representation of \vec{a} in \mathcal{S}_{G} (algebraic vector); $\mathbf{a}_{\mathrm{G}} \in \mathbb{R}^{3}$
- $\mathbf{D}^{\mathrm{B} / \mathrm{G}}$: attitude matrix of \mathcal{S}_{B} w.r.t. $\mathcal{S}_{\mathrm{G}} ; \mathbf{D}^{\mathrm{B} / \mathrm{G}} \in \mathrm{SO}(3)^{1}$

We can convert representations of a given geometric vector as below:

$$
\mathbf{a}_{\mathrm{B}}=\mathbf{D}^{\mathrm{B} / \mathrm{G}} \mathbf{a}_{\mathrm{G}}
$$

From this and the definition of $\mathrm{SO}(3)$, we see that

$$
\left(\mathbf{D}^{\mathrm{B} / \mathrm{G}}\right)^{-1}=\left(\mathbf{D}^{\mathrm{B} / \mathrm{G}}\right)^{\mathrm{T}}=\mathbf{D}^{\mathrm{G} / \mathrm{B}}
$$

${ }^{1} \mathrm{SO}(3) \triangleq\left\{\mathbf{D} \in \mathbb{R}^{3 \times 3}: \mathbf{D D}^{\mathrm{T}}=\mathbf{I}_{3}\right\}$ is the special orthogonal group.

Kinematic Equations

Euler Angles

Consider the elementary rotation matrices (about axis 1,2 , and 3 , resp.):

$$
\begin{gathered}
\mathbf{D}_{1}(\varrho)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{c} \varrho & \mathrm{~s} \varrho \\
0 & -\mathrm{s} \varrho & \mathrm{c} \varrho
\end{array}\right] \quad \mathbf{D}_{2}(\varrho)=\left[\begin{array}{ccc}
\mathrm{c} \varrho & 0 & -\mathrm{s} \varrho \\
0 & 1 & 0 \\
\mathrm{~s} \varrho & 0 & \mathrm{c} \varrho
\end{array}\right] \\
\mathbf{D}_{3}(\varrho)=\left[\begin{array}{ccc}
\mathrm{c} \varrho & \mathrm{~s} \varrho & 0 \\
-\mathrm{s} \varrho & \mathrm{c} \varrho & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

For example, considering a 1-2-3 sequence of rotations of angles denoted by ϕ, θ, and ψ, respectively, the relationship between these (Euler) angles and the attitude matrix is

$$
\mathbf{D}^{\mathrm{B} / \mathrm{G}}=\mathbf{D}_{3}(\psi) \mathbf{D}_{2}(\theta) \mathbf{D}_{1}(\phi)
$$

Kinematic Equations

Attitude Kinematics

We can show that the attitude kinematics can be described in Euler angles $1-2-3$ by

$$
\begin{equation*}
\dot{\boldsymbol{\alpha}}^{\mathrm{B} / \mathrm{G}}=\mathcal{A}\left(\boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}}\right) \boldsymbol{\omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{R}} \tag{1}
\end{equation*}
$$

where $\boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}} \triangleq\left[\begin{array}{lll}\phi & \theta & \psi\end{array}\right]^{\mathrm{T}}, \boldsymbol{\omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{G}} \in \mathbb{R}^{3}$ is the \mathcal{S}_{B} representation of the angular velocity of \mathcal{S}_{B} w.r.t. \mathcal{S}_{G}, and

$$
\mathcal{A}\left(\boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}}\right) \triangleq\left[\begin{array}{ccc}
\mathrm{c} \psi / \mathrm{c} \theta & -\mathrm{s} \psi / \mathrm{c} \theta & 0 \\
\mathrm{~s} \psi & \mathrm{c} \psi & 0 \\
-\mathrm{c} \psi \mathrm{~s} \theta / \mathrm{c} \theta & \mathrm{~s} \psi \mathrm{~s} \theta / \mathrm{c} \theta & 1
\end{array}\right]
$$

Kinematic Equations

Position Kinematics

They are modeled by ${ }^{2}$

$$
\frac{d}{d t_{\mathrm{G}}} \vec{r}^{\mathrm{B} / \mathrm{G}}=\vec{v}^{\mathrm{B} / \mathrm{G}},
$$

which can be represented in \mathcal{S}_{G} to give

$$
\begin{equation*}
\dot{\mathbf{r}}_{\mathrm{G}}^{\mathrm{B} / \mathrm{G}}=\mathbf{v}_{\mathrm{G}}^{\mathrm{B} / \mathrm{G}} \tag{2}
\end{equation*}
$$

${ }^{2}$ The subindex G in the time derivative is to say that it is taken with respect to an observer on S_{G}.

Sensor Modeling

Rate-Gyro:

Its measure $\check{\omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{G}} \in \mathbb{R}^{3}$ is modeled by

$$
\begin{equation*}
\check{\omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{G}}=\omega_{\mathrm{B}}^{\mathrm{B} / \mathrm{G}}+\boldsymbol{\beta}_{\mathrm{B}}^{g}+\mathbf{w}_{\mathrm{B}}^{g} \tag{3}
\end{equation*}
$$

where $\mathbf{w}_{\mathrm{B}}^{g} \in \mathbb{R}^{3}$ is a zero-mean random noise with covariance \mathbf{Q}^{g} (for simplicity, it is assumed constant and known) and $\boldsymbol{\beta}_{\mathrm{B}}^{g} \in \mathbb{R}^{3}$ is a bias described by the following Wiener process:

$$
\begin{equation*}
\dot{\boldsymbol{\beta}}_{\mathrm{B}}^{\mathrm{g}}=\mathbf{w}_{\mathrm{B}}^{\beta_{g}} \tag{4}
\end{equation*}
$$

where $\mathbf{w}_{\mathrm{B}}^{\beta_{g}}$ is a zero-mean random noise with covariance $\mathbf{Q}^{\beta_{g}}$ (it is also assumed constant and known).

Sensor Modeling

Accelerometer:

Its measure $\check{\mathbf{a}}_{\mathrm{B}}^{\mathrm{B} / \mathrm{G}} \in \mathbb{R}^{3}$ is modeled by

$$
\begin{equation*}
\check{\mathbf{a}}_{\mathrm{B}}^{\mathrm{B} / \mathrm{G}}=\mathbf{D}^{\mathrm{B} / \mathrm{G}}\left(\dot{\mathbf{v}}_{\mathrm{G}}^{\mathrm{B} / \mathrm{G}}-\mathbf{g}_{\mathrm{G}}\right)+\boldsymbol{\beta}_{\mathrm{B}}^{\mathrm{a}}+\mathbf{w}_{\mathrm{B}}^{\mathrm{a}} \tag{5}
\end{equation*}
$$

where $\mathbf{g}_{\mathrm{G}} \triangleq-g \mathbf{e}_{3}$ is the gravity acceleration vector, $\mathbf{w}_{\mathrm{B}}^{a} \in \mathbb{R}^{3}$ is a zero-mean random noise with covariance \mathbf{Q}^{a} (for simplicity, it is assumed constant and known), and $\boldsymbol{\beta}_{\mathrm{B}}^{\mathrm{a}} \in \mathbb{R}^{3}$ is a bias described by the following Wiener process:

$$
\begin{equation*}
\dot{\boldsymbol{\beta}}_{\mathrm{B}}^{\mathrm{a}}=\mathbf{w}_{\mathrm{B}}^{\beta_{a}} \tag{6}
\end{equation*}
$$

where $\mathbf{w}_{\mathrm{B}}^{\beta_{a}}$ is a zero-mean random noise with covariance $\mathbf{Q}^{\beta_{a}}$ (it is also assumed constant and known).

Sensor Modeling

Visual Fiducial System:

It could be the AprilTag system, for example. Its algorithm provides indirect measures of position $\vec{r}^{i / \mathrm{C}}$ and attitude $\mathbf{D}^{i / \mathrm{C}}$ of the tag w.r.t. \mathcal{S}_{C}. We consider just the first and assume that its measure is described by

$$
\begin{equation*}
\breve{\mathbf{r}}_{\mathrm{C}}^{i / \mathrm{C}}=\mathbf{r}_{\mathrm{C}}^{i / \mathrm{C}}+\mathbf{n}_{\mathrm{C}}^{i} \tag{7}
\end{equation*}
$$

where $\mathbf{n}_{\mathrm{C}}^{i} \in \mathbb{R}^{3}$ is a zero-mean noise with covariance \mathbf{R} (which, for simplicity, is assumed known and constant).

Problem Statement

Scenario

- The platform is a 6DOF box with a downward-facing camera and an inertial measurement unit (IMU).
- The ground has many mapped fiducial markers.

Problem Statement

Problem

It is to recursively estimate $\mathbf{r}_{\mathrm{G}}^{\mathrm{B} / \mathrm{G}}, \mathbf{v}_{\mathrm{G}}^{\mathrm{B} / \mathrm{G}}, \boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}}, \boldsymbol{\beta}_{\mathrm{B}}^{g}$, and $\boldsymbol{\beta}_{\mathrm{B}}^{\mathrm{a}}$ using:

- the models (1)-(7) and
- the measurements $\check{\mathbf{a}}_{\mathrm{B}}^{\mathrm{B} / \mathrm{G}}, \check{\omega}_{\mathrm{B}}^{\mathrm{B} / \mathrm{G}}$, and $\check{\mathbf{r}}_{\mathrm{C}}^{i / \mathrm{C}}$.

Problem Solution

State Equation

The models (1)-(6) can be put together in the following state equation:

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u})+\mathbf{G}(\mathbf{x}) \mathbf{w}, \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{x} \triangleq\left[\left(\mathbf{r}_{\mathrm{G}}^{\mathrm{B} / \mathrm{G}}\right)^{\mathrm{T}}\left(\mathbf{v}_{\mathrm{G}}^{\mathrm{B} / \mathrm{G}}\right)^{\mathrm{T}}\left(\boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}}\right)^{\mathrm{T}}\left(\boldsymbol{\beta}_{\mathrm{B}}^{\mathrm{B}}\right)^{\mathrm{T}}\left(\boldsymbol{\beta}_{\mathrm{B}}^{\mathrm{g}}\right)^{\mathrm{T}}\right]^{\mathrm{T}} \in \mathbb{R}^{15} \\
& \mathbf{u} \triangleq\left[\left(\check{\mathbf{a}}_{\mathrm{B}}^{\mathrm{B} / \mathrm{G}}\right)^{\mathrm{T}}\left(\check{\boldsymbol{w}}_{\mathrm{B}}^{\mathrm{B} / \mathrm{G}}\right)^{\mathrm{T}}\right]^{\mathrm{T}} \in \mathbb{R}^{6} \\
& \mathbf{w} \triangleq\left[\left(\mathbf{w}_{\mathrm{B}}^{\mathrm{B}}\right)^{\mathrm{T}}\left(\mathbf{w}_{\mathrm{B}}^{\mathrm{g}}\right)^{\mathrm{T}}\left(\mathbf{w}^{\beta_{\mathrm{a}}}\right)^{\mathrm{T}}\left(\mathbf{w}^{\beta_{g}}\right)^{\mathrm{T}}\right]^{\mathrm{T}} \in \mathbb{R}^{12}
\end{aligned}
$$

Problem Solution

State Equation (Cont.)

$$
\begin{aligned}
& \mathbf{G}(\mathbf{x}) \triangleq\left[\begin{array}{cccc}
\mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\
-\mathbf{D}^{\mathrm{T}}\left(\boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}}\right) & \mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\
\mathbf{0}_{3 \times 3} & -\mathcal{A}\left(\boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}}\right) & \mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 3} \\
\mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 3} & \mathbf{I}_{3} & \mathbf{0}_{3 \times 3} \\
\mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 3} & \mathbf{0}_{3 \times 3} & \mathbf{I}_{3}
\end{array}\right] \in \mathbb{R}^{15 \times 12}
\end{aligned}
$$

Problem Solution

State Equation (Cont.)

$$
\mathbf{D}\left(\boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}}\right)=\mathbf{D}_{3}(\psi) \mathbf{D}_{2}(\theta) \mathbf{D}_{1}(\phi) \in \mathrm{SO}(3)
$$

and

$$
\begin{gathered}
\phi \triangleq \mathbf{e}_{1}^{\mathrm{T}} \boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}} \\
\theta \triangleq \mathbf{e}_{2}^{\mathrm{T}} \boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}} \\
\psi \triangleq \mathbf{e}_{3}^{\mathrm{T}} \boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}}
\end{gathered}
$$

Problem Solution

Measurement Equations

Using the problem geometry (see the scenario on slide 11) and equation (7), the measurement equations can be derived as:

$$
\begin{equation*}
\mathbf{y}^{i}=\mathbf{h}^{i}(\mathbf{x})+\mathbf{n}^{i}, \quad i=1, \ldots, q \tag{9}
\end{equation*}
$$

where $q \in \mathbb{Z}_{+}$is the number of visible markers, $\mathbf{n}^{i} \equiv \mathbf{n}_{\mathrm{C}}^{i}, \mathbf{y}^{i} \triangleq \check{\mathbf{r}}_{\mathrm{C}}^{i / \mathrm{C}}$ and

$$
\mathbf{h}^{i}(\mathbf{x}) \triangleq \mathbf{D}^{\mathrm{C} / \mathrm{B}}\left(\mathbf{D}\left(\boldsymbol{\alpha}^{\mathrm{B} / \mathrm{G}}\right)\left(\mathbf{r}_{\mathrm{G}}^{i / \mathrm{G}}-\mathbf{r}_{\mathrm{G}}^{\mathrm{B} / \mathrm{G}}\right)-\mathbf{r}_{\mathrm{B}}^{\mathrm{C} / \mathrm{B}}\right)
$$

Now we are ready for the computational exercise!

Reference

目 Santos, D. A. Notas de aula de MP-282 - Dynamic Modeling and Control of Multicopters. ITA, 2018. [Chapter 4]

