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Notation and Preliminary Definitions

Geometric Vectors and Cartesian Coordinate Systems

#»a : geometric (or physical) vector

â: unit geometric (physical) vector

SB ≜ {B; x̂B, ŷB, ẑB}: body Cartesian coordinate system (CCS)

SG ≜ {G ; x̂G, ŷG, ẑG}: ground CCS
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Notation and Preliminary Definitions

Algebraic Vectors and Attitude Matrices

aB: representation of #»a in SB (algebraic vector); aB ∈ R3

aG: representation of #»a in SG (algebraic vector); aG ∈ R3

DB/G: attitude matrix of SB w.r.t. SG; D
B/G ∈ SO(3) 1

We can convert representations of a given geometric vector as below:

aB = DB/GaG

From this and the definition of SO(3), we see that(
DB/G

)−1
=

(
DB/G

)T
= DG/B

1SO(3) ≜ {D ∈ R3×3 : DDT = I3} is the special orthogonal group.
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Kinematic Equations

Euler Angles

Consider the elementary rotation matrices (about axis 1,2, and 3, resp.):

D1(ϱ) =

 1 0 0
0 cϱ sϱ
0 −sϱ cϱ

 D2(ϱ) =

 cϱ 0 −sϱ
0 1 0
sϱ 0 cϱ



D3(ϱ) =

 cϱ sϱ 0
−sϱ cϱ 0
0 0 1


For example, considering a 1-2-3 sequence of rotations of angles denoted by
ϕ, θ, and ψ, respectively, the relationship between these (Euler) angles and
the attitude matrix is

DB/G = D3(ψ)D2(θ)D1(ϕ)
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Kinematic Equations

Attitude Kinematics

We can show that the attitude kinematics can be described in Euler angles
1-2-3 by

α̇B/G = A
(
αB/G

)
ω

B/R
B (1)

where αB/G ≜ [ϕ θ ψ]T, ω
B/G
B ∈ R3 is the SB representation of the angular

velocity of SB w.r.t. SG, and

A
(
αB/G

)
≜

 cψ/cθ −sψ/cθ 0
sψ cψ 0

−cψsθ/cθ sψsθ/cθ 1


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Kinematic Equations

Position Kinematics

They are modeled by2

d

dtG
#»r B/G = #»v B/G,

which can be represented in SG to give

ṙ
B/G
G = v

B/G
G (2)

2The subindex G in the time derivative is to say that it is taken with respect to an
observer on SG.
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Sensor Modeling

Rate-Gyro:

Its measure ω̌
B/G
B ∈ R3 is modeled by

ω̌
B/G
B = ω

B/G
B + βg

B +wg
B (3)

where wg
B ∈ R3 is a zero-mean random noise with covariance Qg (for sim-

plicity, it is assumed constant and known) and βg
B ∈ R3 is a bias described

by the following Wiener process:

β̇g
B = w

βg

B (4)

where w
βg

B is a zero-mean random noise with covariance Qβg (it is also
assumed constant and known).
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Sensor Modeling

Accelerometer:

Its measure ǎ
B/G
B ∈ R3 is modeled by

ǎ
B/G
B = DB/G

(
v̇
B/G
G − gG

)
+ βa

B +wa
B (5)

where gG ≜ −ge3 is the gravity acceleration vector, wa
B ∈ R3 is a zero-mean

random noise with covariance Qa (for simplicity, it is assumed constant and
known), and βa

B ∈ R3 is a bias described by the following Wiener process:

β̇a
B = wβa

B (6)

where wβa

B is a zero-mean random noise with covariance Qβa (it is also
assumed constant and known).
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Sensor Modeling

Visual Fiducial System:

It could be the AprilTag system, for example. Its algorithm provides indirect
measures of position #»r i/C and attitude Di/C of the tag w.r.t. SC. We
consider just the first and assume that its measure is described by

ř
i/C
C = r

i/C
C + niC (7)

where niC ∈ R3 is a zero-mean noise with covariance R (which, for simplicity,
is assumed known and constant).
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Problem Statement

Scenario

The platform is a 6DOF box with a downward-facing camera and an
inertial measurement unit (IMU).

The ground has many mapped fiducial markers.
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Problem Statement

Problem

It is to recursively estimate r
B/G
G , v

B/G
G , αB/G, βg

B, and βa
B using:

the models (1)–(7) and

the measurements ǎ
B/G
B , ω̌

B/G
B , and ř

i/C
C .
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Problem Solution

State Equation

The models (1)–(6) can be put together in the following state equation:

ẋ = f (x,u) + G (x)w, (8)

where

x ≜

[(
r
B/G
G

)T (
v
B/G
G

)T (
αB/G

)T
(βa

B)
T (

βg
B

)T]T ∈ R15

u ≜

[(
ǎ
B/G
B

)T (
ω̌

B/G
B

)T
]T

∈ R6

w ≜

[
(wa

B)
T (

wg
B

)T (
wβa

)T (
wβg

)T
]T

∈ R12
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Problem Solution

State Equation (Cont.)

f (x,u) ≜



v
B/G
G

DT
(
αB/G

)(
ǎ
B/G
B − βa

B

)
+ gG

A
(
αB/G

)(
ω̌

B/G
B − βg

B

)
03×1

03×1


∈ R15

G(x) ≜



03×3 03×3 03×3 03×3

−DT
(
αB/G

)
03×3 03×3 03×3

03×3 −A
(
αB/G

)
03×3 03×3

03×3 03×3 I3 03×3

03×3 03×3 03×3 I3


∈ R15×12
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Problem Solution

State Equation (Cont.)

D
(
αB/G

)
= D3(ψ)D2(θ)D1(ϕ) ∈ SO(3)

and

ϕ ≜ eT1 α
B/G

θ ≜ eT2 α
B/G

ψ ≜ eT3 α
B/G
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Problem Solution

Measurement Equations

Using the problem geometry (see the scenario on slide 11) and equation (7),
the measurement equations can be derived as:

yi = hi (x) + ni , i = 1, ..., q (9)

where q ∈ Z+ is the number of visible markers, ni ≡ niC, y
i ≜ ř

i/C
C and

hi (x) ≜ DC/B

(
D
(
αB/G

)(
r
i/G
G − r

B/G
G

)
− r

C/B
B

)

Now we are ready for the computational exercise!

17 / 18



Reference

Santos, D. A. Notas de aula de MP-282 – Dynamic Modeling and
Control of Multicopters. ITA, 2018. [Chapter 4]

18 / 18


	Notation and Preliminary Definitions
	Kinematic Equations
	Sensor Modeling
	Problem Statement
	Problem Solution

