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Notation and preliminaries ...
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Notation and Preliminary Definitions

Geometric Vectors and Cartesian Coordinate Systems

3: geometric (or physical) vector

a: unit geometric (physical) vector

Sp = {B; %5, ¥, 25 }: body Cartesian coordinate system (CCS)
Sa = {G;Xq, Ja, 2a}: ground CCS
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Notation and Preliminary Definitions

Algebraic Vectors and Attitude Matrices

e ap: representation of 3 in Sp (algebraic vector); ap € R*
@ ag: representation of 3 in Sq (algebraic vector); ag € R3
o DP/C: attitude matrix of Sp w.r.t. Sg; DP/¢ € SO(3) *

We can convert representations of a given geometric vector as below:
ag = DP/%ag
From this and the definition of SO(3), we see that

(DB/G)*l _ (DB/G>T _ po/B

'SO(3) £ {D € R***: DD" = I3} is the special orthogonal group.
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Kinematic Equations

Euler Angles

Consider the elementary rotation matrices (about axis 1,2, and 3, resp.):

1 0 0 co 0 —sp
Di(o)=| 0 co sp Dy(p)=| 0 1 O
0 —sp cp so 0 co
co so O
D3(0)=| —so co 0
0 0 1

For example, considering a 1-2-3 sequence of rotations of angles denoted by
@, 0, and 1), respectively, the relationship between these (Euler) angles and
the attitude matrix is

DP/G = D3(¢))D4(6)D1(¢)
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Kinematic Equations

Attitude Kinematics
We can show that the attitude kinematics can be described in Euler angles

1-2-3 by

aB/G — 4 (aB/G> wBB/R (1)

where o/ £ [¢ 6 z/J]T, wE/G € R3 is the Sp representation of the angular
velocity of Sg w.r.t. Sg, and

cpfcd  —sy/ch 0O
A (aB/ G) = sy ctp 0
—cypsf/ch  sipsf/ch 1

>
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Kinematic Equations

Position Kinematics

They are modeled by?

d —B/G _ VB/G.
dtc

which can be represented in Sg to give

.B/G _ _B/G
' = Ve

()

*The subindex G in the time derivative is to say that it is taken with respect to an
observer on Sg.
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Sensor Modeling

Rate-Gyro:
Its measure d:g/G € R3 is modeled by

op'% = wp/% + 05 + wh (3)

where w§, € RR3 is a zero-mean random noise with covariance Q& (for sim-

plicity, it is assumed constant and known) and 3§ € R3 is a bias described
by the following Wiener process:

B8 = wi (4)

where wgg is a zero-mean random noise with covariance Q% (it is also
assumed constant and known).
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Sensor Modeling

Accelerometer:

Its measure ég/G € R3 is modeled by
ap/¢ = DP/6 (v —gq ) + B3 + wh (5)

where g, £ —ges is the gravity acceleration vector, wj € R3 is a zero-mean
random noise with covariance Q? (for simplicity, it is assumed constant and
known), and 82 € R3 is a bias described by the following Wiener process:

B3 = wy (6)

where wﬁBa is a zero-mean random noise with covariance Q% (it is also
assumed constant and known).
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Sensor Modeling

Visual Fiducial System:

It could be the AprilTag system, for example. Its algorithm provides indirect
measures of position 77/ and attitude D'/© of the tag w.rt. Sc. We
consider just the first and assume that its measure is described by

FiC/C = r"c/C 4 "6 (7)

where ni € R3 is a zero-mean noise with covariance R (which, for simplicity,
is assumed known and constant).
Xc
camera
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Problem Statement

Scenario

@ The platform is a 6DOF box with a downward-facing camera and an
inertial measurement unit (IMU).

@ The ground has many mapped fiducial markers.

IMU

— platform

camera
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Problem Statement

Problem
B/G B/G

VG aP/G, B%, and B3 using:

It is to recursively estimate rg
@ the models (1)—(7) and

3B/G B/G ¢i/C
@ the measurements aB/ / and ¥ '/
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Problem Solution

State Equation

The models (1)—(6) can be put together in the following state equation:

x = f(x,u) + G(x)w, (8)
where
s (rB/G>T (vg/G)T <aB/G)T (ﬁ%)T (ﬂ%)T] c R
ul (5B/G)T (wE/G)T] € RS
o) )" (w)" ()] e

14/18



Problem Solution

State Equation (Cont.)

G
G
D" (/%) ( e 8
f(x,u) & ( G)( B/G_ﬁlgg) € R
0341
L 03><1 ]
0343 03x3 0343 0343
-p"7 (aB/G> 033 033 0343
N 15%12
G(x) = 033 -A (aB/G) 0343 03x3 | ER
0343 033 I3 0343
I 0343 0343 033 I3 |
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Problem Solution

State Equation (Cont.)

D (/%) = D3(1))D2(6)D1(¢) € SO(3)

and
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Problem Solution

Measurement Equations

Using the problem geometry (see the scenario on slide 11) and equation (7),
the measurement equations can be derived as:

y=hi(x)+n', i=1.q (9)

where g € Z, is the number of visible markers, n = nC, y' & F"C/C and

i G i/G  B/G C/B
h' (x) £ D¢/B <D (aB/ ) (r'cé - rG/ ) - rB/ )
Now we are ready for the computational exercise!
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