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Real Matrix: Definition and Notation

Definition:

A real matrix with dimensions n x m is the following bi-dimensional arrange-
ment:

a1 d12 ... Adim
a1 d22 ... am
A
AL | e R™™, (1)
dnl dn2 ... dmm

in which the elements a;; € R, Vi € {1,2,...,n} and Vj € {1,2, ..., m}.
Notation:

@ Matrices: boldface upper-case letters.
e Transpose matrix: AT.

@ Scalars and subscripts/superscripts: italic lower-case letters.
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Real Vector: Definition and Notation

Definition:

A real vector with dimension n is a real matrix (column) of dimensions nx 1:

ai
as 3:2 €R" (2)
dn
in which a; € R, i € {1, ..., n}, are its components.

Notation:

@ Vectors: boldface lower-case letters.
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Diagonal Matrix

Definition:

The square matrix A € R™" is a diagonal matrix if all its elemets out of
the primary diagonal are zeros:

alii 0 N 0
0 a»o ... 0

A= | _ . (3)
0 0 ann

Remarks:

e Frequent notation: A = diag(ai1, ..., ann)-

e Block-diagonal matrix: B = diag(Aq,...,Ax), where A;, i = 1,...,k,
are matrices.

o Identity matrix: If a1 = ax» = ... = app = 1, then A £ 1, is called
the identity matrix (of dimension n x n).
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Symmetric and Skew-Symmetric Matrices

Symmetric Matrix:
A square matrix A € R™" is symmetric if

A=AT (4)
In other words, the elements of A are such that a;j = a;,Vi,j=1,...,n.

Skew-Symmetric Matrix:
A square matrix A € R™" if skew-symmetric if
A=-AT (5)

In other words, the elements of A are such that a; = 0,Vi and a;; =
—aji, Vi # J.
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Symmetric and Skew-Symmetric Matrices

Interesting result:

Any square matrix A € R™*" can be written as the sum of a symmetric and
a skew-symmetric matrix:

A+AT  A-AT

A 2+2 (6)

This is the so-called Toeplitz decomposition.
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Lower and Upper Triangular Matrices

Lower Triangular Matrix:

It is a square matrix with zero elements over the primary diagonal:

ain 0 ... O
L a?1 a?z ... 0 )
anl an2 --- dnpn
Upper Triangular Matrix:
It is a square matrix with zero elements under the primary diagonal:
ail 412 ... adp
TS B ®)
0 0 ... am
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Trace of a Matrix

Definition:

The trace of a square matrix A € R™" is the sum of the elements of its
primary diagonal:

tr (A) = Z aji (9)
i=1

Interesting Results (A,B,C are square and « is a scalar):

8/27



Determinant of a Matrix

The determinant of a square matrix A € R"*" is a kind of signed volume
and can be computed recursively by the Laplace Formula:

n

det (A) = > (—1)" 3 det (A) (10)
j=1

where A; € RODX("=1) is 5 sub-matrix obtained from A by excluding its
ith row and jth column.
Interesting Results:

o det(A) = det(AT).

o det (AB) = det (A) det (B).

o det(aA) = " det (A).
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Rank of a Matrix

Definition:

The rank of a matrix A € R"*™ is its number of linearly independent rows
or columns. We denote the rank of A by:

rank (A) (11)

Remarks:

o Consider a matrix A € A"™. In this case, if rank (A) = min(n, m),
then we say that A has full rank.

o If A € R™™ is not full-rank, it is called a rank-deficient matrix.

e rank (A) = dim (R(A)), where R(A) is the column space of A.
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Cofactor and Adjoint Matrices

Cofactor:

The cofator 3j; € R relative to the element a; of A € R™" is given by

i 2 (=1) " det (A;) (12)

2

Cofactor matrix:

The cofactor matrix relative to A € R"*" is

511 512 0o a 5]_”
a1 ax» ... anp

cof (A) & € R™" (13)
anl 32 ... apn

Adjoint Matrix:

The adjoint matrix relative to A € R"™" is adj(A) £ cof(A)T.
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Singular and Inverse Matrices

Singular Matrix:

A square matrix A € R"™" is said to be singular if det (A) = 0. Otherwise,
A is said to be nonsingular.

Inverse Matrix:

Consider a nonsingular square matrix A € R™*". The inverse of A, which
we denote by A™! € R™" is such that

A lA=1, (14)

Interesting Result:

_1_adj(A)
° A= det (A)’

o det (A—l) = 1/det (A).
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Inverse of a Partitioned Matrix

Interesting Result:

Consider the matrices Py; € R™*™ Py, € R™*™ Py € R™*™M and
P>, € R™*™  QOne can show that

—1
P11 P Vi1 Vi
— 15
[ Py Po ] Vo1 Vax (15)
where
1
Vi = <P11 - P12P2_21P21> (16)
Vi = —V11|""12|:’2_21 (17)
Vo = —P5 P2 Vi (18)
-1 -1
Vo = (Pzz — P21P; P12> (19)
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Matrix Inversion Lemma

Another Interesting Result:

Consider the matrices P, R, and H with appropriate dimensions. Assume
that P and R are nonsingular. One can show that

(P—l + HTR_lH)_l — P —PH" (HPHT + R)_1 HP  (20)

Remark:

In future chapters, the above result is used to derive the recursive least
squares and the information filter algorithms.

14 /27



Jacobian Matrix

Definition:

Consider a differentiable vectorial function f : R” — R™. Denote its inde-
pendent variable by x € R”. The Jacobian matrix of f is given by

(0RO 0]
Ox1 Oxo ~ Ox,
0f, 0f 0f
df A 37X1 87)(2 o O0xn mxn
xo| T E R (21)
Ofy Oy OFy
8X1 aXQ o 8Xn

where f; shortly denotes the ith component f;(x) € R of the vector f(x),
while x; denotes the jth component of x.
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Definition:

Consider a twice differentiable scalar function g : R” — R. Denote its

independent variable by x € R". The Hessian matrix of g is the symmetric
matrix given by

rg g 9%g |
8x12 8X1(9X2 o 8x1 aXn
> g g g
d2g N Ox20x1 ﬁ T Ox00x
-6 A 2 20UXn nxn
o eR (22)
0’g 0°g 827g
O0x,0x1  O0x,0x2 Ox2

where g is an abbreviation for g(x).
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Eigenvalues and Eigenvectors

Definition:

Consider a square matrix A € R™*". The eigenvalues \; € C and eigenvec-
tors v; € R", i =1, ..., n, relative to A are such that

AI/,' = )\,'I/,', Vi (23)

Remark:

o If the eigenvalues )A; are all distinct from one another, then the
corresponding eigenvectors v; are all linearly independent.

@ An eigenvector is parallel to the vector resulting from its
premultiplication with A.

@ The eigenvalues are obtained by solving the characteristic
(polynomial) equation det (Al, —A) = 0.
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Matrix Square Root: Cholesky Decomposition

Result:

Consider a real symmetric positive-definite * matrix A € R™". One can
show that there is a unique decomposition of A into the form:

A=LL"T (24)
where L is a lower-triangular matrix with positive diagonal elements.

Remarks:

e If A is symmetric and indefinite, one can use the LDLT decomposition.

@ It will be used to compute the square root of a covariance matrix in
the UKF algorithm.

'A is said to be PD if x"Ax > 0,¥x € R"/ {0}. Matrix A is PD iff all its eigenvalues
are positive.
18/27



Matrix Exponential

Definition:
The exponential of a square matrix A € R"*" is defined by

1 1
exp(A)éI,,-I-A+EA2+...+HA"+... (25)

Remark:

There are many ways to compute (in general, approximately) the exponential
of a matrix. For this course, | suggest 2:

@ The Sylvester method

@ The diagonalization method

*For more possibilities, see (Moler and Van Loan, 2003).
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Inner Product and Norm of Vectors

Inner Product:

Consider two real vectors with the same dimension a € R” and b € R".
The inner product of a with b is denoted by (a,b) € R and defined by

(a,b) 2 a’bh (26)

h-Norm:

The h-norm of a vector a € R" is denoted by ||a|| € R and defined by
lall £ v/(a,a) (27)

Remarks:

e ||a| >0, VYa # 0,x1 and ||a]| = 0 only if a = 0px1.
e (a,b) = (b,a), etc.
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Norm of a Matrix

Definition: Frobenius Norm

The Frobenius norm of a matrix A € R"*? is defined by

IA[lF 2 /tr (AAT) (28)

Definition: h-Norm

The norm of A € R"*P induced by the h-norm of a vetor a € RP is defined
by

A
A £ max 122
22 Tl

(29)
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Condition Number

Definition:

Consider a symmetric positive-definite square matrix A € R"*". The con-
dition number of A is

K (A) = [IAJATY (30)
where ||.|| can be any matrix norm.

Remark:

Large values of x (A) indicate that A is ill-conditioned (i.e., it is “almost”
singular!).
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Orthogonal Projection of a Vector
Definition:

The orthogonal projection of a vector a € R"” on a vector b € R" is the
vector

proj,a = <|ﬁ;’t|)2>b eR”

a 1
L/ i

projpa

(31)

Remark:

One can show that

(a —proj,a) L b

(32)
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@R Decomposition

Result:

Consider a real nonsingular matrix A € R"*". One can show that there
exists a unique decomposition of A in the form:

A=QR (33)
where Q is an orthonormal matrix and R is an upper triangular matrix.

Remark:

@ There are many methods to compute the above decomposition. In this
course we can adopt the Gram-Schmidt process.

@ In general, it can be used to efficiently solve systems of linear equations
or to obtain a matrix inverse.

@ It can be used to improve numerical properties of filters.
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LU Decomposition

Definition:

Consider a real nonsingular matrix A € R™". Its LU decomposition is given
by:

A=LU (34)

where L is a lower triangular matrix (with ones in the primary diagonal) and
U is an upper triangular matrix (not necessarily with ones in the primary
diagonal).

Remark:

@ U can be obtained by Gauss elimination and L is formed with the
multipliers of the Gauss elimination process (an example is given on
the board).

@ It can be used to improve numerical properties of filters.
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