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Real Matrix: Definition and Notation

Definition:

A real matrix with dimensions n×m is the following bi-dimensional arrange-
ment:

A ≜


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

an1 an2 . . . anm

 ∈ Rn×m, (1)

in which the elements aij ∈ R, ∀i ∈ {1, 2, ..., n} and ∀j ∈ {1, 2, ...,m}.

Notation:

Matrices: boldface upper-case letters.

Transpose matrix: AT.

Scalars and subscripts/superscripts: italic lower-case letters.
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Real Vector: Definition and Notation

Definition:

A real vector with dimension n is a real matrix (column) of dimensions n×1:

a ≜


a1
a2
...
an

 ∈ Rn (2)

in which ai ∈ R, i ∈ {1, ..., n}, are its components.

Notation:

Vectors: boldface lower-case letters.
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Diagonal Matrix

Definition:

The square matrix A ∈ Rn×n is a diagonal matrix if all its elemets out of
the primary diagonal are zeros:

A ≜


a11 0 . . . 0
0 a22 . . . 0
...

. . .
...

0 0 . . . ann

 (3)

Remarks:

Frequent notation: A = diag(a11, ..., ann).

Block-diagonal matrix: B = diag(A1, ...,Ak), where Ai , i = 1, ..., k,
are matrices.

Identity matrix: If a11 = a22 = . . . = ann = 1, then A ≜ In is called
the identity matrix (of dimension n × n).
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Symmetric and Skew-Symmetric Matrices

Symmetric Matrix:

A square matrix A ∈ Rn×n is symmetric if

A = AT (4)

In other words, the elements of A are such that aij = aji ,∀i , j = 1, ..., n.

Skew-Symmetric Matrix:

A square matrix A ∈ Rn×n if skew-symmetric if

A = −AT (5)

In other words, the elements of A are such that aii = 0,∀i and aij =
−aji ,∀i ̸= j .
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Symmetric and Skew-Symmetric Matrices

Interesting result:

Any square matrix A ∈ Rn×n can be written as the sum of a symmetric and
a skew-symmetric matrix:

A =
A+ AT

2
+

A− AT

2
(6)

This is the so-called Toeplitz decomposition.
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Lower and Upper Triangular Matrices

Lower Triangular Matrix:

It is a square matrix with zero elements over the primary diagonal:

L ≜


a11 0 . . . 0
a21 a22 . . . 0
...

...
an1 an2 . . . ann

 (7)

Upper Triangular Matrix:

It is a square matrix with zero elements under the primary diagonal:

U ≜


a11 a12 . . . a1n
0 a22 . . . a2n
...

...
...

0 0 . . . ann

 (8)
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Trace of a Matrix

Definition:

The trace of a square matrix A ∈ Rn×n is the sum of the elements of its
primary diagonal:

tr (A) ≜
n∑

i=1

aii (9)

Interesting Results (A,B,C are square and α is a scalar):

tr (A) = tr (AT)

tr (ABC) = tr (CAB) = tr (BCA)

tr (AB) = tr (BA)

tr (A+ B) = tr (A) + tr (B)

tr (αA) = α tr (A)
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Determinant of a Matrix

The determinant of a square matrix A ∈ Rn×n is a kind of signed volume
and can be computed recursively by the Laplace Formula:

det (A) =
n∑

j=1

(−1)i+j aij det
(
Aij

)
(10)

where Aij ∈ R(n−1)×(n−1) is a sub-matrix obtained from A by excluding its
ith row and jth column.

Interesting Results:

det (A) = det(AT).

det (AB) = det (A) det (B).

det (αA) = αn det (A).
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Rank of a Matrix

Definition:

The rank of a matrix A ∈ Rn×m is its number of linearly independent rows
or columns. We denote the rank of A by:

rank (A) (11)

Remarks:

Consider a matrix A ∈ An×m. In this case, if rank (A) = min(n,m),
then we say that A has full rank.

If A ∈ Rn×m is not full-rank, it is called a rank-deficient matrix.

rank (A) = dim
(
R(A)

)
, where R(A) is the column space of A.
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Cofactor and Adjoint Matrices

Cofactor:

The cofator ãij ∈ R relative to the element aij of A ∈ Rn×n is given by

ãij ≜ (−1)i+j det
(
Aij

)
(12)

Cofactor matrix:

The cofactor matrix relative to A ∈ Rn×n is

cof(A) ≜


ã11 ã12 . . . ã1n
ã21 ã22 . . . ã2n
...

...
...

ãn1 ãn2 . . . ãnn

 ∈ Rn×n (13)

Adjoint Matrix:

The adjoint matrix relative to A ∈ Rn×n is adj(A) ≜ cof(A)T.
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Singular and Inverse Matrices

Singular Matrix:

A square matrix A ∈ Rn×n is said to be singular if det (A) = 0. Otherwise,
A is said to be nonsingular.

Inverse Matrix:

Consider a nonsingular square matrix A ∈ Rn×n. The inverse of A, which
we denote by A−1 ∈ Rn×n, is such that

A−1A = In. (14)

Interesting Result:

A−1 =
adj (A)

det (A)
.

det
(
A−1

)
= 1/ det (A).
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Inverse of a Partitioned Matrix

Interesting Result:

Consider the matrices P11 ∈ Rn1×n1 , P12 ∈ Rn1×n2 , P21 ∈ Rn2×n1 and
P22 ∈ Rn2×n2 . One can show that[

P11 P12

P21 P22

]−1

=

[
V11 V12

V21 V22

]
(15)

where

V11 =
(
P11 − P12P

−1
22 P21

)−1
(16)

V12 = −V11P12P
−1
22 (17)

V21 = −P−1
22 P21V11 (18)

V22 =
(
P22 − P21P

−1
11 P12

)−1
(19)
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Matrix Inversion Lemma

Another Interesting Result:

Consider the matrices P, R, and H with appropriate dimensions. Assume
that P and R are nonsingular. One can show that

(
P−1 +HTR−1H

)−1
= P− PHT

(
HPHT + R

)−1
HP (20)

Remark:

In future chapters, the above result is used to derive the recursive least
squares and the information filter algorithms.
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Jacobian Matrix

Definition:

Consider a differentiable vectorial function f : Rn → Rm. Denote its inde-
pendent variable by x ∈ Rn. The Jacobian matrix of f is given by

df

dx
≜



∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xn

...
...

...
...

∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xn


∈ Rm×n (21)

where fi shortly denotes the ith component fi (x) ∈ R of the vector f(x),
while xj denotes the jth component of x.
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Hessian Matrix

Definition:

Consider a twice differentiable scalar function g : Rn → R. Denote its
independent variable by x ∈ Rn. The Hessian matrix of g is the symmetric
matrix given by

d2g

dx2
≜



∂2g

∂x21

∂2g

∂x1∂x2
. . .

∂2g

∂x1∂xn

∂2g

∂x2∂x1

∂2g

∂x22
. . .

∂2g

∂x2∂xn

...
...

...
...

∂2g

∂xn∂x1

∂2g

∂xn∂x2

∂2g

∂x2n


∈ Rn×n (22)

where g is an abbreviation for g(x).
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Eigenvalues and Eigenvectors

Definition:

Consider a square matrix A ∈ Rn×n. The eigenvalues λi ∈ C and eigenvec-
tors νi ∈ Rn, i = 1, ..., n, relative to A are such that

Aνi = λiνi , ∀i (23)

Remark:

If the eigenvalues λi are all distinct from one another, then the
corresponding eigenvectors νi are all linearly independent.

An eigenvector is parallel to the vector resulting from its
premultiplication with A.

The eigenvalues are obtained by solving the characteristic
(polynomial) equation det (λIn − A) = 0.
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Matrix Square Root: Cholesky Decomposition

Result:

Consider a real symmetric positive-definite 1 matrix A ∈ Rn×n. One can
show that there is a unique decomposition of A into the form:

A = LLT (24)

where L is a lower-triangular matrix with positive diagonal elements.

Remarks:

If A is symmetric and indefinite, one can use the LDLT decomposition.

It will be used to compute the square root of a covariance matrix in
the UKF algorithm.

1A is said to be PD if xTAx > 0, ∀x ∈ Rn/ {0}. Matrix A is PD iff all its eigenvalues
are positive.
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Matrix Exponential

Definition:

The exponential of a square matrix A ∈ Rn×n is defined by

exp (A) ≜ In + A+
1

2!
A2 + . . .+

1

k!
Ak + . . . (25)

Remark:

There are many ways to compute (in general, approximately) the exponential
of a matrix. For this course, I suggest 2:

The Sylvester method

The diagonalization method

2For more possibilities, see (Moler and Van Loan, 2003).
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Inner Product and Norm of Vectors

Inner Product:

Consider two real vectors with the same dimension a ∈ Rn and b ∈ Rn.
The inner product of a with b is denoted by ⟨a,b⟩ ∈ R and defined by

⟨a,b⟩ ≜ aTb (26)

l2-Norm:

The l2-norm of a vector a ∈ Rn is denoted by ∥a∥ ∈ R and defined by

∥a∥ ≜
√
⟨a, a⟩ (27)

Remarks:

∥a∥ > 0, ∀a ̸= 0n×1 and ∥a∥ = 0 only if a = 0n×1.

⟨a,b⟩ = ⟨b, a⟩, etc.
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Norm of a Matrix

Definition: Frobenius Norm

The Frobenius norm of a matrix A ∈ Rn×p is defined by

∥A∥F ≜

√
tr
(
AAT

)
(28)

Definition: l2-Norm

The norm of A ∈ Rn×p induced by the l2-norm of a vetor a ∈ Rp is defined
by

∥A∥2 ≜ max
a̸=0

∥Aa∥
∥a∥

(29)
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Condition Number

Definition:

Consider a symmetric positive-definite square matrix A ∈ Rn×n. The con-
dition number of A is

κ (A) ≜ ∥A∥∥A−1∥ (30)

where ∥.∥ can be any matrix norm.

Remark:

Large values of κ (A) indicate that A is ill-conditioned (i.e., it is “almost”
singular!).
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Orthogonal Projection of a Vector

Definition:

The orthogonal projection of a vector a ∈ Rn on a vector b ∈ Rn is the
vector

projb a ≜
⟨a,b⟩
∥b∥2

b ∈ Rn (31)

 𝐚 
𝐛 

proj 𝐛𝐚 

Remark:

One can show that

(a− projb a) ⊥ b (32)
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QR Decomposition

Result:

Consider a real nonsingular matrix A ∈ Rn×n. One can show that there
exists a unique decomposition of A in the form:

A = QR (33)

where Q is an orthonormal matrix and R is an upper triangular matrix.

Remark:

There are many methods to compute the above decomposition. In this
course we can adopt the Gram-Schmidt process.

In general, it can be used to efficiently solve systems of linear equations
or to obtain a matrix inverse.

It can be used to improve numerical properties of filters.
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LU Decomposition

Definition:

Consider a real nonsingular matrix A ∈ Rn×n. Its LU decomposition is given
by:

A = LU (34)

where L is a lower triangular matrix (with ones in the primary diagonal) and
U is an upper triangular matrix (not necessarily with ones in the primary
diagonal).

Remark:

U can be obtained by Gauss elimination and L is formed with the
multipliers of the Gauss elimination process (an example is given on
the board).

It can be used to improve numerical properties of filters.
25 / 27



References. . .

26 / 27



References

Golub, G. H.; Van Loan, C. F. Matrix Computations. Johns Hopkins
University Press, 1996.

Bernstein, D. S. Matrix Mathematics. Princeton University Press,
2005.

Moler, C.; Van Loan, C. Nineteen Dubious Ways to Compute the Ex-
ponential of a Matrix, Twenty-Five Years Later. Siam Review, 45(1),
2003.

27 / 27


