Optimal Filtering with Aerospace Applications Section 2.1: Linear Algebra and Matrices

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

São José dos Campos - SP 2023

Real Matrix: Definition and Notation

Definition:

A real matrix with dimensions $n \times m$ is the following bi-dimensional arrangement:

$$
\mathbf{A} \triangleq\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \tag{1}\\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right] \in \mathbb{R}^{n \times m}
$$

in which the elements $a_{i j} \in \mathbb{R}, \forall i \in\{1,2, \ldots, n\}$ and $\forall j \in\{1,2, \ldots, m\}$.

Notation:

- Matrices: boldface upper-case letters.
- Transpose matrix: \mathbf{A}^{T}.
- Scalars and subscripts/superscripts: italic lower-case letters.

Real Vector: Definition and Notation

Definition:

A real vector with dimension n is a real matrix (column) of dimensions $n \times 1$:

$$
\mathbf{a} \triangleq\left[\begin{array}{c}
a_{1} \tag{2}\\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \in \mathbb{R}^{n}
$$

in which $a_{i} \in \mathbb{R}, i \in\{1, \ldots, n\}$, are its components.

Notation:

- Vectors: boldface lower-case letters.

Diagonal Matrix

Definition:

The square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a diagonal matrix if all its elemets out of the primary diagonal are zeros:

$$
\mathbf{A} \triangleq\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \tag{3}\\
0 & a_{22} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right]
$$

Remarks:

- Frequent notation: $\mathbf{A}=\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right)$.
- Block-diagonal matrix: $\mathbf{B}=\operatorname{diag}\left(\mathbf{A}_{1}, \ldots, \mathbf{A}_{k}\right)$, where $\mathbf{A}_{i}, i=1, \ldots, k$, are matrices.
- Identity matrix: If $a_{11}=a_{22}=\ldots=a_{n n}=1$, then $\mathbf{A} \triangleq \mathbf{I}_{n}$ is called the identity matrix (of dimension $n \times n$).

Symmetric and Skew-Symmetric Matrices

Symmetric Matrix:

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric if

$$
\begin{equation*}
\mathbf{A}=\mathbf{A}^{\mathrm{T}} \tag{4}
\end{equation*}
$$

In other words, the elements of \mathbf{A} are such that $a_{i j}=a_{j i}, \forall i, j=1, \ldots, n$.
Skew-Symmetric Matrix:
A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ if skew-symmetric if

$$
\begin{equation*}
\mathbf{A}=-\mathbf{A}^{\mathrm{T}} \tag{5}
\end{equation*}
$$

In other words, the elements of \mathbf{A} are such that $a_{i i}=0, \forall i$ and $a_{i j}=$ $-a_{j i}, \forall i \neq j$.

Symmetric and Skew-Symmetric Matrices

Interesting result:

Any square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be written as the sum of a symmetric and a skew-symmetric matrix:

$$
\begin{equation*}
\mathbf{A}=\frac{\mathbf{A}+\mathbf{A}^{\mathrm{T}}}{2}+\frac{\mathbf{A}-\mathbf{A}^{\mathrm{T}}}{2} \tag{6}
\end{equation*}
$$

This is the so-called Toeplitz decomposition.

Lower and Upper Triangular Matrices

Lower Triangular Matrix:

It is a square matrix with zero elements over the primary diagonal:

$$
\mathbf{L} \triangleq\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \tag{7}\\
a_{21} & a_{22} & \ldots & 0 \\
\vdots & \vdots & & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]
$$

Upper Triangular Matrix:

It is a square matrix with zero elements under the primary diagonal:

$$
\mathbf{U} \triangleq\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \tag{8}\\
0 & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right]
$$

Trace of a Matrix

Definition:

The trace of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the sum of the elements of its primary diagonal:

$$
\begin{equation*}
\operatorname{tr}(\mathbf{A}) \triangleq \sum_{i=1}^{n} a_{i i} \tag{9}
\end{equation*}
$$

Interesting Results (A,B,C are square and α is a scalar):

- $\operatorname{tr}(\mathbf{A})=\operatorname{tr}\left(\mathbf{A}^{\mathrm{T}}\right)$
- $\operatorname{tr}(\mathbf{A B C})=\operatorname{tr}(\mathbf{C A B})=\operatorname{tr}(\mathbf{B C A})$
- $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$
- $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$
- $\operatorname{tr}(\alpha \mathbf{A})=\alpha \operatorname{tr}(\mathbf{A})$

Determinant of a Matrix

The determinant of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a kind of signed volume and can be computed recursively by the Laplace Formula:

$$
\begin{equation*}
\operatorname{det}(\mathbf{A})=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} \operatorname{det}\left(\mathbf{A}_{i j}\right) \tag{10}
\end{equation*}
$$

where $\mathbf{A}_{i j} \in \mathbb{R}^{(n-1) \times(n-1)}$ is a sub-matrix obtained from \mathbf{A} by excluding its i th row and j th column.

Interesting Results:

- $\operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}^{\mathrm{T}}\right)$.
- $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$.
- $\operatorname{det}(\alpha \mathbf{A})=\alpha^{n} \operatorname{det}(\mathbf{A})$.

Rank of a Matrix

Definition:

The rank of a matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ is its number of linearly independent rows or columns. We denote the rank of \mathbf{A} by:

$\operatorname{rank}(\mathbf{A})$

Remarks:

- Consider a matrix $\mathbf{A} \in \mathbb{A}^{n \times m}$. In this case, if $\operatorname{rank}(\mathbf{A})=\min (n, m)$, then we say that \mathbf{A} has full rank.
- If $\mathbf{A} \in \mathbb{R}^{n \times m}$ is not full-rank, it is called a rank-deficient matrix.
- $\operatorname{rank}(\mathbf{A})=\operatorname{dim}(R(\mathbf{A}))$, where $R(\mathbf{A})$ is the column space of \mathbf{A}.

Cofactor and Adjoint Matrices

Cofactor:

The cofator $\tilde{a}_{i j} \in \mathbb{R}$ relative to the element $a_{i j}$ of $\mathbf{A} \in \mathbb{R}^{n \times n}$ is given by

$$
\begin{equation*}
\tilde{a}_{i j} \triangleq(-1)^{i+j} \operatorname{det}\left(\mathbf{A}_{i j}\right) \tag{12}
\end{equation*}
$$

Cofactor matrix:
The cofactor matrix relative to $\mathbf{A} \in \mathbb{R}^{n \times n}$ is

$$
\operatorname{cof}(\mathbf{A}) \triangleq\left[\begin{array}{cccc}
\tilde{a}_{11} & \tilde{a}_{12} & \ldots & \tilde{a}_{1 n} \tag{13}\\
\tilde{a}_{21} & \tilde{a}_{22} & \ldots & \tilde{a}_{2 n} \\
\vdots & \vdots & & \vdots \\
\tilde{a}_{n 1} & \tilde{a}_{n 2} & \ldots & \tilde{a}_{n n}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

Adjoint Matrix:

The adjoint matrix relative to $\mathbf{A} \in \mathbb{R}^{n \times n}$ is $\operatorname{adj}(\mathbf{A}) \triangleq \operatorname{cof}(\mathbf{A})^{\mathrm{T}}$.

Singular and Inverse Matrices

Singular Matrix:

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be singular if $\operatorname{det}(\mathbf{A})=0$. Otherwise,
\mathbf{A} is said to be nonsingular.
Inverse Matrix:
Consider a nonsingular square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. The inverse of \mathbf{A}, which we denote by $\mathbf{A}^{-1} \in \mathbb{R}^{n \times n}$, is such that

$$
\begin{equation*}
\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}_{n} . \tag{14}
\end{equation*}
$$

Interesting Result:

- $\mathbf{A}^{-1}=\frac{\operatorname{adj}(\mathbf{A})}{\operatorname{det}(\mathbf{A})}$.
- $\operatorname{det}\left(\mathbf{A}^{-1}\right)=1 / \operatorname{det}(\mathbf{A})$.

Inverse of a Partitioned Matrix

Interesting Result:

Consider the matrices $\mathbf{P}_{11} \in \mathbb{R}^{n_{1} \times n_{1}}, \mathbf{P}_{12} \in \mathbb{R}^{n_{1} \times n_{2}}, \mathbf{P}_{21} \in \mathbb{R}^{n_{2} \times n_{1}}$ and $\mathbf{P}_{22} \in \mathbb{R}^{n_{2} \times n_{2}}$. One can show that

$$
\left[\begin{array}{ll}
\mathbf{P}_{11} & \mathbf{P}_{12} \tag{15}\\
\mathbf{P}_{21} & \mathbf{P}_{22}
\end{array}\right]^{-1}=\left[\begin{array}{ll}
\mathbf{V}_{11} & \mathbf{V}_{12} \\
\mathbf{V}_{21} & \mathbf{V}_{22}
\end{array}\right]
$$

where

$$
\begin{align*}
& \mathbf{V}_{11}=\left(\mathbf{P}_{11}-\mathbf{P}_{12} \mathbf{P}_{22}^{-1} \mathbf{P}_{21}\right)^{-1} \tag{16}\\
& \mathbf{V}_{12}=-\mathbf{V}_{11} \mathbf{P}_{12} \mathbf{P}_{22}^{-1} \tag{17}\\
& \mathbf{V}_{21}=-\mathbf{P}_{22}^{-1} \mathbf{P}_{21} \mathbf{V}_{11} \tag{18}\\
& \mathbf{V}_{22}=\left(\mathbf{P}_{22}-\mathbf{P}_{21} \mathbf{P}_{11}^{-1} \mathbf{P}_{12}\right)^{-1} \tag{19}
\end{align*}
$$

Matrix Inversion Lemma

Another Interesting Result:

Consider the matrices \mathbf{P}, \mathbf{R}, and \mathbf{H} with appropriate dimensions. Assume that \mathbf{P} and \mathbf{R} are nonsingular. One can show that

$$
\begin{equation*}
\left(\mathbf{P}^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right)^{-1}=\mathbf{P}-\mathbf{P} \mathbf{H}^{\mathrm{T}}\left(\mathbf{H P H}^{\mathrm{T}}+\mathbf{R}\right)^{-1} \mathbf{H} \mathbf{P} \tag{20}
\end{equation*}
$$

Remark:

In future chapters, the above result is used to derive the recursive least squares and the information filter algorithms.

Jacobian Matrix

Definition:

Consider a differentiable vectorial function $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Denote its independent variable by $\mathbf{x} \in \mathbb{R}^{n}$. The Jacobian matrix of \mathbf{f} is given by

$$
\frac{d \mathbf{f}}{d \mathbf{x}} \triangleq\left[\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \tag{21}\\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

where f_{i} shortly denotes the i th component $f_{i}(\mathbf{x}) \in \mathbb{R}$ of the vector $\mathbf{f}(\mathbf{x})$, while x_{j} denotes the j th component of \mathbf{x}.

Hessian Matrix

Definition:

Consider a twice differentiable scalar function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Denote its independent variable by $\mathbf{x} \in \mathbb{R}^{n}$. The Hessian matrix of g is the symmetric matrix given by

$$
\frac{d^{2} g}{d \mathbf{x}^{2}} \triangleq\left[\begin{array}{cccc}
\frac{\partial^{2} g}{\partial x_{1}^{2}} & \frac{\partial^{2} g}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} g}{\partial x_{1} \partial x_{n}} \tag{22}\\
\frac{\partial^{2} g}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} g}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} g}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial^{2} g}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} g}{\partial x_{n} \partial x_{2}} & & \frac{\partial^{2} g}{\partial x_{n}^{2}}
\end{array}\right] \in \mathbb{R}^{n \times n}
$$

where g is an abbreviation for $g(\mathbf{x})$.

Eigenvalues and Eigenvectors

Definition:

Consider a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. The eigenvalues $\lambda_{i} \in \mathbb{C}$ and eigenvectors $\boldsymbol{\nu}_{i} \in \mathbb{R}^{n}, i=1, \ldots, n$, relative to \mathbf{A} are such that

$$
\begin{equation*}
\mathbf{A} \boldsymbol{\nu}_{i}=\lambda_{i} \boldsymbol{\nu}_{i}, \forall i \tag{23}
\end{equation*}
$$

Remark:

- If the eigenvalues λ_{i} are all distinct from one another, then the corresponding eigenvectors ν_{i} are all linearly independent.
- An eigenvector is parallel to the vector resulting from its premultiplication with A.
- The eigenvalues are obtained by solving the characteristic (polynomial) equation $\operatorname{det}\left(\lambda \mathbf{I}_{n}-\mathbf{A}\right)=0$.

Matrix Square Root: Cholesky Decomposition

Result:

Consider a real symmetric positive-definite ${ }^{1}$ matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. One can show that there is a unique decomposition of \mathbf{A} into the form:

$$
\begin{equation*}
\mathbf{A}=\mathbf{L L}^{\mathrm{T}} \tag{24}
\end{equation*}
$$

where \mathbf{L} is a lower-triangular matrix with positive diagonal elements.

Remarks:

- If \mathbf{A} is symmetric and indefinite, one can use the $L D L^{\mathrm{T}}$ decomposition.
- It will be used to compute the square root of a covariance matrix in the UKF algorithm.

[^0]
Matrix Exponential

Definition:

The exponential of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defined by

$$
\begin{equation*}
\exp (\mathbf{A}) \triangleq \mathbf{I}_{n}+\mathbf{A}+\frac{1}{2!} \mathbf{A}^{2}+\ldots+\frac{1}{k!} \mathbf{A}^{k}+\ldots \tag{25}
\end{equation*}
$$

Remark:

There are many ways to compute (in general, approximately) the exponential of a matrix. For this course, I suggest ${ }^{2}$:

- The Sylvester method
- The diagonalization method

[^1]
Inner Product and Norm of Vectors

Inner Product:

Consider two real vectors with the same dimension $\mathbf{a} \in \mathbb{R}^{n}$ and $\mathbf{b} \in \mathbb{R}^{n}$. The inner product of \mathbf{a} with \mathbf{b} is denoted by $\langle\mathbf{a}, \mathbf{b}\rangle \in \mathbb{R}$ and defined by

$$
\begin{equation*}
\langle\mathbf{a}, \mathbf{b}\rangle \triangleq \mathbf{a}^{\mathrm{T}} \mathbf{b} \tag{26}
\end{equation*}
$$

I_{2}-Norm:

The I_{2}-norm of a vector $\mathbf{a} \in \mathbb{R}^{n}$ is denoted by $\|\mathbf{a}\| \in \mathbb{R}$ and defined by

$$
\begin{equation*}
\|\mathbf{a}\| \triangleq \sqrt{\langle\mathbf{a}, \mathbf{a}\rangle} \tag{27}
\end{equation*}
$$

Remarks:

- $\|\mathbf{a}\|>0, \forall \mathbf{a} \neq \mathbf{0}_{n \times 1}$ and $\|\mathbf{a}\|=0$ only if $\mathbf{a}=\mathbf{0}_{n \times 1}$.
- $\langle\mathbf{a}, \mathbf{b}\rangle=\langle\mathbf{b}, \mathbf{a}\rangle$, etc.

Norm of a Matrix

Definition: Frobenius Norm

The Frobenius norm of a matrix $\mathbf{A} \in \mathbb{R}^{n \times p}$ is defined by

$$
\begin{equation*}
\|\mathbf{A}\|_{F} \triangleq \sqrt{\operatorname{tr}\left(\mathbf{A A}^{\mathrm{T}}\right)} \tag{28}
\end{equation*}
$$

Definition: I_{2}-Norm

The norm of $\mathbf{A} \in \mathbb{R}^{n \times p}$ induced by the l_{2}-norm of a vetor $\mathbf{a} \in \mathbb{R}^{p}$ is defined by

$$
\begin{equation*}
\|\mathbf{A}\|_{2} \triangleq \max _{\mathbf{a} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{a}\|}{\|\mathbf{a}\|} \tag{29}
\end{equation*}
$$

Condition Number

Definition:

Consider a symmetric positive-definite square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. The condition number of \mathbf{A} is

$$
\kappa(\mathbf{A}) \triangleq\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\|
$$

where $\|$.$\| can be any matrix norm.$

Remark:

Large values of $\kappa(\mathbf{A})$ indicate that \mathbf{A} is ill-conditioned (i.e., it is "almost" singular!).

Orthogonal Projection of a Vector

Definition:

The orthogonal projection of a vector $\mathbf{a} \in \mathbb{R}^{n}$ on a vector $\mathbf{b} \in \mathbb{R}^{n}$ is the vector

$$
\begin{equation*}
\operatorname{proj}_{\mathbf{b}} \mathbf{a} \triangleq \frac{\langle\mathbf{a}, \mathbf{b}\rangle}{\|\mathbf{b}\|^{2}} \mathbf{b} \in \mathbb{R}^{n} \tag{31}
\end{equation*}
$$

Remark:
One can show that

$$
\begin{equation*}
\left(\mathbf{a}-\operatorname{proj}_{\mathbf{b}} \mathbf{a}\right) \perp \mathbf{b} \tag{32}
\end{equation*}
$$

QR Decomposition

Result:

Consider a real nonsingular matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. One can show that there exists a unique decomposition of \mathbf{A} in the form:

$$
\begin{equation*}
\mathbf{A}=\mathbf{Q} \mathbf{R} \tag{33}
\end{equation*}
$$

where \mathbf{Q} is an orthonormal matrix and \mathbf{R} is an upper triangular matrix.

Remark:

- There are many methods to compute the above decomposition. In this course we can adopt the Gram-Schmidt process.
- In general, it can be used to efficiently solve systems of linear equations or to obtain a matrix inverse.
- It can be used to improve numerical properties of filters.

LU Decomposition

Definition:

Consider a real nonsingular matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. Its $L U$ decomposition is given by:

$$
\begin{equation*}
\mathbf{A}=\mathbf{L U} \tag{34}
\end{equation*}
$$

where \mathbf{L} is a lower triangular matrix (with ones in the primary diagonal) and \mathbf{U} is an upper triangular matrix (not necessarily with ones in the primary diagonal).

Remark:

- U can be obtained by Gauss elimination and \mathbf{L} is formed with the multipliers of the Gauss elimination process (an example is given on the board).
- It can be used to improve numerical properties of filters.

References...

References

目 Golub，G．H．；Van Loan，C．F．Matrix Computations．Johns Hopkins University Press， 1996.

囯 Bernstein，D．S．Matrix Mathematics．Princeton University Press， 2005.

围 Moler，C．；Van Loan，C．Nineteen Dubious Ways to Compute the Ex－ ponential of a Matrix，Twenty－Five Years Later．Siam Review，45（1）， 2003.

[^0]: ${ }^{1} \mathbf{A}$ is said to be PD if $\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}>0, \forall \mathbf{x} \in \mathbb{R}^{n} /\{0\}$. Matrix \mathbf{A} is PD iff all its eigenvalues are positive.

[^1]: ${ }^{2}$ For more possibilities, see (Moler and Van Loan, 2003).

