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Instituto Tecnológico de Aeronáutica
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State-Space Models

Notation:

Denote an arbitrary discrete-time instant by k ∈ Z+.

Denote an arbitrary continuous-time instant by t ∈ R+.

Denote the state vectors in continuous and discrete time, respectively,
by x(t) ∈ Rnx and xk ∈ Rnx .

Denote the control input vectors in continuous and discrete time, re-
spectively, by u(t) ∈ Rnu and uk ∈ Rnu .

Denote the output vectors in continuous and discrete time, respectively,
by y(t) ∈ Rny and yk ∈ Rny .
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State-Space Model

Nonlinear Continuous-Time State-Space Model:

It consists of the state equation:

ẋ(t) = f
(
t, x(t),u(t)

)
(1)

and of the output equation:

y(t) = h
(
t, x(t),u(t)

)
(2)

where f : R+ × Rnx × Rnu → Rnx and h : R+ × Rnx × Rnu → Rny are
nonlinear time-varying functions.
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State-Space Model

Nonlinear Discrete-Time State-Space Model:

It consists of the state equation:

xk+1 = fk (xk ,uk) (3)

and of the output equation:

yk = hk (xk ,uk) (4)

where fk : Rnx × Rnu → Rnx and hk : Rnx × Rnu → Rny are nonlinear
time-varying functions.
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State-Space Model

Linear Continuous-Time State-Space Model:

It consists of the state equation:

ẋ(t) = A(t)x(t) + B(t)u(t) (5)

and of the output equation:

y(t) = C(t)x(t) (6)

where A(t) ∈ Rnx×nx is the state matrix, B(t) ∈ Rnx×nu is the input matrix,
and C(t) ∈ Rny×nx is the output matrix.
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State-Space Model

Linear Discrete-Time State-Space Model:

Is consists of the state equation:

xk+1 = Akxk + Bkuk (7)

and of the output equation:

yk = Ckxk (8)

where Ak ∈ Rnx×nx is the state matrix, Bk ∈ Rnx×nu is the input matrix,
and Ck ∈ Rny×nx is the output matrix.
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State-Space Model

Continuous-Time LTI1 State-Space Model:

It consists of the state equation:

ẋ(t) = Ax(t) + Bu(t) (9)

and of the output equation:

y(t) = Cx(t) (10)

where A ∈ Rnx×nx is the state matrix, B ∈ Rnx×nu is the input matrix, and
C ∈ Rny×nx is the output matrix. Note that these matrices are constant.

1Linear time-invariant.
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State-Space Model

Discrete-time LTI State-Space Model:

It consists of the state equation:

xk+1 = Axk + Buk (11)

and of the output equation:

yk = Cxk (12)

where A ∈ Rnx×nx is the state matrix, B ∈ Rnx×nu is the input matrix, and
C ∈ Rny×nx is the output matrix. Note that these matrices are constant.
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Linearization . . .
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Linearization by Taylor Series

Taylor Series Expansion:

Consider the nonlinear functions f : R+ × Rnx × Rnu → Rnx and h : R+ ×
Rnx × Rnu → Rny in the continuous-time nonlinear state-space model (1)-
(2). Assume that they are differentiable. Their Taylor series expansion with
respect to (x,u) = (x̄, ū) are given by

f (t, x,u) = f (t, x̄, ū) +
df (t, x̄, ū)

dx
δx+

df (t, x̄, ū)

du
δu+ . . . (13)

h (t, x,u) = h (t, x̄, ū) +
dh (t, x̄, ū)

dx
δx+

dh (t, x̄, ū)

du
δu+ . . . (14)

where δx ≜ x− x̄, δu ≜ u− ū, and the first-order derivatives are Jacobian
matrices.
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Linearization by Taylor Series

Linearized Model:

By truncating (13)-(14) after the first-order terms and replacing the resulting
expressions into (1)-(2), we obtain the following linearized model:

δẋ = A(t)δx+ B(t)δu (15)

δy = C(t)δx (16)

where

A(t) ≜
df (t, x̄, ū)

dx
B(t) ≜

df (t, x̄, ū)

du
C(t) ≜

dh (t, x̄, ū)

dx
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Obtaining a State-Space Model. . .
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Obtaining a State-Space Model

From a Differential Equation:

Consider an nth-order ordinary differential equation in the form

ξ(n)(t) + g
(
t, ξ(t), ξ̇(t), ξ̈(t), ..., ξ(n−1)(t)

)
= f (t) (17)

where f : R+ → R is a forcing function and g : R+ × R× · · · × R → R is
a nonlinear function (in general).

Define the following state and input variables:

x1 ≜ ξ

x2 ≜ ξ̇
...

xn ≜ ξ(n−1)

(18)

u ≜ f (19)

...
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Obtaining a State-Space Model

...

Differentiating (18) with respect to time and using (17) and (19), we can
obtain the following (scalar) state equations:

ẋ1 = x2
ẋ2 = x3

...
ẋn = −g (t, x1, ..., xn) + u

(20)
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Obtaining a State-Space Model

From a Transfer Function:

Consider a SISO2 system with input u(t) and output y(t). Denote the
Laplace transforms of u(t) and y(t) by U(s) and Y (s), respectively. We
call the process of obtaining a state-space model (A,B,C) from a transfer
function

G (s) ≜
Y (s)

U(s)
=

sm + bm−1s
m−1 + ...+ b1s + b0

sn + an−1sn−1 + ...+ a1s + a0
(21)

a state-space realization.

There are infinitely many state-space realizations of the same transfer func-
tion. We adopt an example to show three canonical ones.

2Single Input Single Output.
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Obtaining a State-Space Model

Example:

Describe the input-output relation of a system by the transfer function:

G (s) ≜
Y (s)

U(s)
=

s + 1

s2 + 5s + 6
(22)

where U(s) and Y (s) denote the Laplace transform of the input and output,
respectively.

Obtain two distinct realizations of G (s).
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Solution of LTI State-Space Models. . .
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Solution of LTI State-Space Models

Continuous Time:

The solution of the continuous-time LTI state equation (9) in t ≥ t0 is given
by

x(t) = exp
{
A(t − t0)

}
x(t0) +

∫ t

t0

exp
{
A(t − τ)

}
Bu(τ)dτ (23)

From the output equation (10) and equation (23), we obtain the solution
of the continuous-time LTI state-space model in t ≥ t0 as

y(t) = C exp
{
A(t − t0)

}
x(t0) + C

∫ t

t0

exp
{
A(t − τ)

}
Bu(τ)dτ (24)
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Solution of LTI State-Space Models

Discrete Time:

The solution of the discrete-time LTI state equation (11) in k ≥ k0 is given
by

xk = Ak−k0xk0 +
k−k0∑
i=1

Ak−k0−iBui+k0−1 (25)

From the output equation (12) and equation (25), we obtain the solution
of the discrete-time LTI state-space model in k ≥ k0 as

yk = CAk−k0xk0 + C
k−k0∑
i=1

Ak−k0−iBui+k0−1 (26)
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Discretization. . .
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Discretization

Time-Discretization of LTI Models:

Consider a continuous-time LTI state-space model of the form (9). Using a
sampling period T and considering that u(τ) = uk , τ ∈ [tk , tk+1), one can
obtain the following discrete-time version of (9):

xk+1 = Adxk + Bduk (27)

yk = Cdxk (28)

where

Ad = exp {AT} Bd =

∫ T

0
exp {Aδ} dδB Cd = C

This method is called zero-order hold (ZOH).
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Stability . . .
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Stability of Continuous-Time LTI Systems

Definition:

Consider a continuous-time LTI system modeled by (9)–(10). This system
is said to be stable (in the classic sense) if, for u(t) ≡ 0nu×1,

∥y(t)∥ ≤ M < ∞, ∀t > t0

lim
t→∞

∥y(t)∥ = 0
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Stability of Continuous-Time LTI Systems

Stability Condition:

Consider a continuous-time LTI system modeled by (9)–(10). Denote the
eigenvalues of the state matrix A by λi , i = 1, ..., nx . A necessary and
sufficient condition for stability (in the classic sense) of this system is

real (λi ) < 0, i = 1, ..., nx (29)

Otherwise, the system is said to be unstable.
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Stability of Discrete-Time LTI Systems

Definition:

Consider a discrete-time LTI system modeled by (11)–(12). This system is
said to be stable (in the classic sense) if, for uk ≡ 0nu×1,

∥yk∥ ≤ M < ∞, ∀k > k0

lim
k→∞

∥yk∥ = 0
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Stability of Discrete-Time LTI Systems

Stability Condition:

Consider a discrete-time LTI system modeled by (11)–(12). Denote the
eigenvalues of the state matrix A by λi , i = 1, ..., nx . A necessary and
sufficient stability condition (in the classic sense) of this system is

|λi | < 1, i = 1, ..., nx (30)

Otherwise, the system is said to be unstable.
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Controllability. . .
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Controllability of LTI Systems

Definition:

Consider the continuous-time LTI state-space model (9)–(10). This
model is said to be controllable from x(t0) if

∃ u(t), t ∈ [t0, tf ], tf < ∞ (31)

such that x(tf ) = 0.

If the model is controllable from any x(t0) ∈ Rnx , then it is said to be
completely controllable.

Remark:

A similar definition can be formulated for discrete-time LTI systems modeled
by (11)–(12).
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Controllability of LTI Systems

Controllability Condition:

For an LTI system modeled by (9) or (11) to be completely controllable, it
is necessary and sufficient that

rank (C) = nx (32)

where C is the controllability matrix defined by

C ≜
[
B AB A2B . . . An−1B

]
(33)
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Observability. . .
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Observability of LTI Systems

Definition:

Consider the continuous-time LTI state-space model (9)–(10). This
model is said to be observable at the point x(t0) if it is possible to
determine x(t0) from

u(t) and y(t), t ∈ [t0, tf ], (34)

for some tf < ∞.

If the model is observable at any point x(t0) ∈ Rnx , then it is said to
be completely observable.

Remark:

A similar definition can be formulated for discrete-time LTI systems modeled
by (11)–(12).
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Observabilidade de Sistemas LIT

Observability Condition:

For the LTI system described by (9)–(10) or (11)–(12) to be completely
observable, it is necessary and sufficient that

rank (O) = nx (35)

where O is the observability matrix defined by

O ≜


C
CA
CA2

...

CAnx−1

 (36)
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Stabilizability and Detectability

Stabilizability:

A system is said to be stabilizable if all its uncontrollable states are stable.

Detectability:

A system is said to be detectable if all its unobservable states are stable.
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