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State-Space Models

Notation:
@ Denote an arbitrary discrete-time instant by k € Z..
@ Denote an arbitrary continuous-time instant by t € R..

@ Denote the state vectors in continuous and discrete time, respectively,
by x(t) € R™ and x,x € R™.

@ Denote the control input vectors in continuous and discrete time, re-
spectively, by u(t) € R™ and u, € R".

@ Denote the output vectors in continuous and discrete time, respectively,
by y(t) € R™ and y, € R™.
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State-Space Model

Nonlinear Continuous-Time State-Space Model:

It consists of the state equation:

x(t) = f (£,%(1), u(1)) 1)
and of the output equation:

y(t) = h (t.x(t), u(t)) (2)

where f : Ry x R™ x R™ — R™ and h : Ry x R™ x R™ — R™ are
nonlinear time-varying functions.
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State-Space Model

Nonlinear Discrete-Time State-Space Model:

It consists of the state equation:

Xkr1 = fi (xk, uk) (3)
and of the output equation:

Yi = hic (X, ug) (4)

where f, : R™ x R™ — R™ and h, : R™ x R™ — R are nonlinear
time-varying functions.
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State-Space Model

Linear Continuous-Time State-Space Model:

It consists of the state equation:
x(t) = A(t)x(t) + B(t)u(t) (5)
and of the output equation:
y(t) = C(£)x(t) (6)

where A(t) € R™*" s the state matrix, B(t) € R™*™ is the input matrix,
and C(t) € R™*™ is the output matrix.
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State-Space Model

Linear Discrete-Time State-Space Model:

Is consists of the state equation:
Xk+1 = Akxk + Bruy (7)
and of the output equation:
Yi = Crxi (8)

where A, € R™*™ is the state matrix, By € R™*"™ is the input matrix,
and C, € R™™"™ is the output matrix.
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State-Space Model

Continuous-Time LTI! State-Space Model:

It consists of the state equation:
x(t) = Ax(t) + Bu(t) 9)
and of the output equation:
y(t) = Cx(t) (10)

where A € R™*"™ is the state matrix, B € R™*™ is the input matrix, and
C € R ™ is the output matrix. Note that these matrices are constant.

1, - . . .
Linear time-invariant.
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State-Space Model

Discrete-time LTI State-Space Model:

It consists of the state equation:
Xk+1 = Axk + Buy (11)
and of the output equation:
Yi = Cxk (12)

where A € R™*™ s the state matrix, B € R™*™ is the input matrix, and
C € R™*™ is the output matrix. Note that these matrices are constant.
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Linearization . ..
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Linearization by Taylor Series

Taylor Series Expansion:

Consider the nonlinear functions f: Ry x R™ x R™ — R™ and h: Ry X
R™ x R™ — R™ in the continuous-time nonlinear state-space model (1)-
(2). Assume that they are differentiable. Their Taylor series expansion with
respect to (x,u) = (X, u) are given by

» _ _, df(t,x,u) df (t,x,u)
f(t,x,u) =f(t,x,u)+ Ix ox + Ju ou+... (13)
e ) = (1 2 T - o (Z’XX’ ) x4+ N (z’u"’ Dout... (14)

A = A - . . . .
where 0x = x — X, du = u — u, and the first-order derivatives are Jacobian
matrices.
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Linearization by Taylor Series

Linearized Model:

By truncating (13)-(14) after the first-order terms and replacing the resulting
expressions into (1)-(2), we obtain the following linearized model:

dx = A(t)ox + B(t)du (15)
6y = C(t)éx (16)
where
A(t) £ df(;’f’ﬁ) B(t) df(;’j Y e ‘“‘(ZX’_"‘_‘)
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Obtaining a State-Space Model. . .
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Obtaining a State-Space Model

From a Differential Equation:

Consider an nth-order ordinary differential equation in the form

E(e) + g (1,60, &0, €1, €M) = F(8)  (17)

where f : Ry — R is a forcing function and g : Ry xR x--- xR = R is
a nonlinear function (in general).

Define the following state and input variables:

X1 % 3
x2 = & (18)
x, 2 gD

utf (19)
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Obtaining a State-Space Model

Differentiating (18) with respect to time and using (17) and (19), we can
obtain the following (scalar) state equations:

)'<1 = X2
X2 = X3

(20)
Xn = —g(t,X1,...sXn) + U
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Obtaining a State-Space Model

From a Transfer Function:

Consider a SISO? system with input u(t) and output y(t). Denote the
Laplace transforms of u(t) and y(t) by U(s) and Y(s), respectively. We
call the process of obtaining a state-space model (A, B, C) from a transfer
function

G(s) & Y(s) _ S™ 4 bp_1s™ Y 4 ...+ bis + by
U(s) s+ a,_15" 1 4 ...+ a5 + ag

a state-space realization.

(21)

There are infinitely many state-space realizations of the same transfer func-
tion. We adopt an example to show three canonical ones.

%Single Input Single Output.
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Obtaining a State-Space Model

Example:

Describe the input-output relation of a system by the transfer function:
Y 1
Gy e T st
U(s) s2+5s+6

where U(s) and Y(s) denote the Laplace transform of the input and output,
respectively.

(22)

Obtain two distinct realizations of G(s).

18/37



Solution of LTI State-Space Models. ..
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Solution of LTI State-Space Models

Continuous Time:

The solution of the continuous-time LTI state equation (9) in t > ty is given
by

x(t):exp{A(t—to)}x(to)—i—/t op {A(t — 7))} Bu(r)dr  (23)

From the output equation (10) and equation (23), we obtain the solution
of the continuous-time LTI state-space model in t > ty as

y(t) = Cexp {A(t — t0)} x(t0) + C/ttexp (At - 7)) Bu(r)dr  (24)
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Solution of LTI State-Space Models

Discrete Time:

The solution of the discrete-time LTI state equation (11) in k > kg is given
by

k—ko
Xk = Ak_kOXko =+ Z Ak_kO_IBUH_kO_]_ (25)
i=1

From the output equation (12) and equation (25), we obtain the solution
of the discrete-time LTI state-space model in k > kg as

k—ko
yi = CAK Roxy + €Y AR By (26)
i=1
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Discretization. . .
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Time-Discretization of LTI Models:
Consider a continuous-time LTI state-space model of the form (9). Using a

sampling period T and considering that u(7) = ug, 7 € [tk, tk+1), one can
obtain the following discrete-time version of (9):

Xi+1 = Agxg + Baug (27)
Y = Caxk (28)
where
-
A; =exp{AT} Bq = / exp {Ad} doB Ci=C
0

This method is called zero-order hold (ZOH).
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Stability . ..
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Stability of Continuous-Time LTI Systems

Definition:

Consider a continuous-time LTI system modeled by (9)—(10). This system
is said to be stable (in the classic sense) if, for u(t) = 0,,x1,

o |ly(t)|<M<oo, VE>1ty

o Jim [ly(t)] =0
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Stability of Continuous-Time LTI Systems

Stability Condition:

Consider a continuous-time LTI system modeled by (9)—(10). Denote the
eigenvalues of the state matrix A by A\;, i = 1,...,nx. A necessary and
sufficient condition for stability (in the classic sense) of this system is

real (A\;) <0, i=1,...,ny (29)

Otherwise, the system is said to be unstable.

‘ imag(4)

Stable Unstable

5 »real(1)
Stable Unstable
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Stability of Discrete-Time LTI Systems

Definition:

Consider a discrete-time LTI system modeled by (11)—(12). This system is
said to be stable (in the classic sense) if, for ux = 0,,x1,

o |lyill £ M < oo, Yk > ko

° k”m lykll =0
—00
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Stability of Discrete-Time LTI Systems

Stability Condition:

Consider a discrete-time LTI system modeled by (11)—(12). Denote the
eigenvalues of the state matrix A by A\;, i = 1,...,nx. A necessary and
sufficient stability condition (in the classic sense) of this system is

INi| <1, i=1,..,5nx (30)
Otherwise, the system is said to be unstable.

Unstable  imag(2)

»real(4)

_ Stable
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Controllability. . .
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Controllability of LTI Systems

Definition:

o Consider the continuous-time LTI state-space model (9)—(10). This
model is said to be controllable from x(tp) if

Ju(t), t € [to, tr], tr < 00 (31)

such that x(tf) = 0.

e If the model is controllable from any x(tp) € R™, then it is said to be
completely controllable.

Remark:

A similar definition can be formulated for discrete-time LT| systems modeled
by (11)—(12).
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Controllability of LTI Systems

Controllability Condition:

For an LTI system modeled by (9) or (11) to be completely controllable, it
is necessary and sufficient that

rank (C) = ny (32)
where C is the controllability matrix defined by

cé[B AB A2B ... A"—ls] (33)
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Observability. . .
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Observability of LTI Systems

Definition:

o Consider the continuous-time LTI state-space model (9)—(10). This
model is said to be observable at the point x(tp) if it is possible to
determine x(tg) from

u(t) and y(t), t € [to, tf], (34)

for some tr < oo.

@ If the model is observable at any point x(tp) € R™, then it is said to
be completely observable.
Remark:

A similar definition can be formulated for discrete-time LTI systems modeled
by (11)-(12).
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Observabilidade de Sistemas LIT

Observability Condition:

For the LTI system described by (9)—(10) or (11)—(12) to be completely
observable, it is necessary and sufficient that

rank (O) = ny

(35)
where O is the observability matrix defined by
e
CA
02| CA? (36)
cAnt
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Stabilizability and Detectability

Stabilizability:

A system is said to be stabilizable if all its uncontrollable states are stable.

Detectability:

A system is said to be detectable if all its unobservable states are stable.
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