Optimal Filtering with Aerospace Applications Section 2.2: Linear Systems

Prof. Dr. Davi Antônio dos Santos
Instituto Tecnológico de Aeronáutica www.professordavisantos.com

São José dos Campos - SP 2023

Contents

(1) State-Space Models
(2) Linearization
(3) Obtaining a State-Space Model
4) Solution of LTI State-Space Models
(5) Discretization
(6) Stability
(7) Controllability
(8) Observability

State-Space Models...

State-Space Models

Notation:

- Denote an arbitrary discrete-time instant by $k \in \mathbb{Z}_{+}$.
- Denote an arbitrary continuous-time instant by $t \in \mathbb{R}_{+}$.
- Denote the state vectors in continuous and discrete time, respectively, by $\mathbf{x}(t) \in \mathbb{R}^{n_{x}}$ and $\mathbf{x}_{k} \in \mathbb{R}^{n_{x}}$.
- Denote the control input vectors in continuous and discrete time, respectively, by $\mathbf{u}(t) \in \mathbb{R}^{n_{u}}$ and $\mathbf{u}_{k} \in \mathbb{R}^{n_{u}}$.
- Denote the output vectors in continuous and discrete time, respectively, by $\mathbf{y}(t) \in \mathbb{R}^{n_{y}}$ and $\mathbf{y}_{k} \in \mathbb{R}^{n_{y}}$.

State-Space Model

Nonlinear Continuous-Time State-Space Model:

It consists of the state equation:

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)) \tag{1}
\end{equation*}
$$

and of the output equation:

$$
\begin{equation*}
\mathbf{y}(t)=\mathbf{h}(t, \mathbf{x}(t), \mathbf{u}(t)) \tag{2}
\end{equation*}
$$

where $\mathbf{f}: \mathbb{R}_{+} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{u}} \rightarrow \mathbb{R}^{n_{x}}$ and $\mathbf{h}: \mathbb{R}_{+} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{u}} \rightarrow \mathbb{R}^{n_{y}}$ are nonlinear time-varying functions.

State-Space Model

Nonlinear Discrete-Time State-Space Model:

It consists of the state equation:

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{f}_{k}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \tag{3}
\end{equation*}
$$

and of the output equation:

$$
\begin{equation*}
\mathbf{y}_{k}=\mathbf{h}_{k}\left(\mathbf{x}_{k}, \mathbf{u}_{k}\right) \tag{4}
\end{equation*}
$$

where $\mathbf{f}_{k}: \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{u}} \rightarrow \mathbb{R}^{n_{x}}$ and $\mathbf{h}_{k}: \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{u}} \rightarrow \mathbb{R}^{n_{y}}$ are nonlinear time-varying functions.

State-Space Model

Linear Continuous-Time State-Space Model:

It consists of the state equation:

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t) \tag{5}
\end{equation*}
$$

and of the output equation:

$$
\begin{equation*}
\mathbf{y}(t)=\mathbf{C}(t) \mathbf{x}(t) \tag{6}
\end{equation*}
$$

where $\mathbf{A}(t) \in \mathbb{R}^{n_{x} \times n_{x}}$ is the state matrix, $\mathbf{B}(t) \in \mathbb{R}^{n_{x} \times n_{u}}$ is the input matrix, and $\mathbf{C}(t) \in \mathbb{R}^{n_{y} \times n_{x}}$ is the output matrix.

State-Space Model

Linear Discrete-Time State-Space Model:

Is consists of the state equation:

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{A}_{k} \mathbf{x}_{k}+\mathbf{B}_{k} \mathbf{u}_{k} \tag{7}
\end{equation*}
$$

and of the output equation:

$$
\begin{equation*}
\mathbf{y}_{k}=\mathbf{C}_{k} \mathbf{x}_{k} \tag{8}
\end{equation*}
$$

where $\mathbf{A}_{k} \in \mathbb{R}^{n_{x} \times n_{x}}$ is the state matrix, $\mathbf{B}_{k} \in \mathbb{R}^{n_{x} \times n_{u}}$ is the input matrix, and $\mathbf{C}_{k} \in \mathbb{R}^{n_{y} \times n_{x}}$ is the output matrix.

State-Space Model

Continuous-Time LTI ${ }^{1}$ State-Space Model:

It consists of the state equation:

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\mathbf{A} \mathbf{x}(t)+\mathbf{B u}(t) \tag{9}
\end{equation*}
$$

and of the output equation:

$$
\begin{equation*}
\mathbf{y}(t)=\mathbf{C} \mathbf{x}(t) \tag{10}
\end{equation*}
$$

where $\mathbf{A} \in \mathbb{R}^{n_{x} \times n_{x}}$ is the state matrix, $\mathbf{B} \in \mathbb{R}^{n_{x} \times n_{u}}$ is the input matrix, and $\mathbf{C} \in \mathbb{R}^{n_{y} \times n_{x}}$ is the output matrix. Note that these matrices are constant.

[^0]
State-Space Model

Discrete-time LTI State-Space Model:

It consists of the state equation:

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{A} \mathbf{x}_{k}+\mathbf{B} \mathbf{u}_{k} \tag{11}
\end{equation*}
$$

and of the output equation:

$$
\begin{equation*}
\mathbf{y}_{k}=\mathbf{C} \mathbf{x}_{k} \tag{12}
\end{equation*}
$$

where $\mathbf{A} \in \mathbb{R}^{n_{x} \times n_{x}}$ is the state matrix, $\mathbf{B} \in \mathbb{R}^{n_{x} \times n_{u}}$ is the input matrix, and $\mathbf{C} \in \mathbb{R}^{n_{y} \times n_{x}}$ is the output matrix. Note that these matrices are constant.

Linearization ...

Linearization by Taylor Series

Taylor Series Expansion:

Consider the nonlinear functions $\mathbf{f}: \mathbb{R}_{+} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{u}} \rightarrow \mathbb{R}^{n_{x}}$ and $\mathbf{h}: \mathbb{R}_{+} \times$ $\mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{u}} \rightarrow \mathbb{R}^{n_{y}}$ in the continuous-time nonlinear state-space model (1)(2). Assume that they are differentiable. Their Taylor series expansion with respect to $(\mathbf{x}, \mathbf{u})=(\overline{\mathbf{x}}, \overline{\mathbf{u}})$ are given by

$$
\begin{equation*}
\mathbf{f}(t, \mathbf{x}, \mathbf{u})=\mathbf{f}(t, \overline{\mathbf{x}}, \overline{\mathbf{u}})+\frac{d \mathbf{f}(t, \overline{\mathbf{x}}, \overline{\mathbf{u}})}{d \mathbf{x}} \delta \mathbf{x}+\frac{d \mathbf{f}(t, \overline{\mathbf{x}}, \overline{\mathbf{u}})}{d \mathbf{u}} \delta \mathbf{u}+\ldots \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{h}(t, \mathbf{x}, \mathbf{u})=\mathbf{h}(t, \overline{\mathbf{x}}, \overline{\mathbf{u}})+\frac{d \mathbf{h}(t, \overline{\mathbf{x}}, \overline{\mathbf{u}})}{d \mathbf{x}} \delta \mathbf{x}+\frac{d \mathbf{h}(t, \overline{\mathbf{x}}, \overline{\mathbf{u}})}{d \mathbf{u}} \delta \mathbf{u}+\ldots \tag{14}
\end{equation*}
$$

where $\delta \mathbf{x} \triangleq \mathbf{x}-\overline{\mathbf{x}}, \delta \mathbf{u} \triangleq \mathbf{u}-\overline{\mathbf{u}}$, and the first-order derivatives are Jacobian matrices.

Linearization by Taylor Series

Linearized Model:

By truncating (13)-(14) after the first-order terms and replacing the resulting expressions into (1)-(2), we obtain the following linearized model:

$$
\begin{gather*}
\delta \dot{\mathbf{x}}=\mathbf{A}(t) \delta \mathbf{x}+\mathbf{B}(t) \delta \mathbf{u} \tag{15}\\
\delta \mathbf{y}=\mathbf{C}(t) \delta \mathbf{x}
\end{gather*}
$$

where

$$
\mathbf{A}(t) \triangleq \frac{d \mathbf{f}(t, \overline{\mathbf{x}}, \overline{\mathbf{u}})}{d \mathbf{x}} \quad \mathbf{B}(t) \triangleq \frac{d \mathbf{f}(t, \overline{\mathbf{x}}, \overline{\mathbf{u}})}{d \mathbf{u}} \quad \mathbf{C}(t) \triangleq \frac{d \mathbf{h}(t, \overline{\mathbf{x}}, \overline{\mathbf{u}})}{d \mathbf{x}}
$$

Obtaining a State-Space Model. . .

Obtaining a State-Space Model

From a Differential Equation:

Consider an n th-order ordinary differential equation in the form

$$
\begin{equation*}
\xi^{(n)}(t)+g\left(t, \xi(t), \dot{\xi}(t), \ddot{\xi}(t), \ldots, \xi^{(n-1)}(t)\right)=f(t) \tag{17}
\end{equation*}
$$

where $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a forcing function and $g: \mathbb{R}_{+} \times \mathbb{R} \times \cdots \times \mathbb{R} \rightarrow \mathbb{R}$ is a nonlinear function (in general).

Define the following state and input variables:

$$
\begin{align*}
x_{1} & \triangleq \xi \tag{18}\\
x_{2} & \triangleq \dot{\xi} \\
& \vdots \tag{19}\\
x_{n} & \triangleq \xi^{(n-1)} \\
& u \triangleq f
\end{align*}
$$

Obtaining a State-Space Model

Differentiating (18) with respect to time and using (17) and (19), we can obtain the following (scalar) state equations:

$$
\begin{align*}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =x_{3} \tag{20}\\
& \vdots \\
\dot{x}_{n} & =-g\left(t, x_{1}, \ldots, x_{n}\right)+u
\end{align*}
$$

Obtaining a State-Space Model

From a Transfer Function:

Consider a SISO^{2} system with input $u(t)$ and output $y(t)$. Denote the Laplace transforms of $u(t)$ and $y(t)$ by $U(s)$ and $Y(s)$, respectively. We call the process of obtaining a state-space model $(\mathbf{A}, \mathbf{B}, \mathbf{C})$ from a transfer function

$$
\begin{equation*}
G(s) \triangleq \frac{Y(s)}{U(s)}=\frac{s^{m}+b_{m-1} s^{m-1}+\ldots+b_{1} s+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}} \tag{21}
\end{equation*}
$$

a state-space realization.

There are infinitely many state-space realizations of the same transfer function. We adopt an example to show three canonical ones.

[^1]
Obtaining a State-Space Model

Example:

Describe the input-output relation of a system by the transfer function:

$$
\begin{equation*}
G(s) \triangleq \frac{Y(s)}{U(s)}=\frac{s+1}{s^{2}+5 s+6} \tag{22}
\end{equation*}
$$

where $U(s)$ and $Y(s)$ denote the Laplace transform of the input and output, respectively.

Obtain two distinct realizations of $G(s)$.

Solution of LTI State-Space Models. . .

Solution of LTI State-Space Models

Continuous Time:

The solution of the continuous-time LTI state equation (9) in $t \geq t_{0}$ is given by

$$
\begin{equation*}
\mathbf{x}(t)=\exp \left\{\mathbf{A}\left(t-t_{0}\right)\right\} \mathbf{x}\left(t_{0}\right)+\int_{t_{0}}^{t} \exp \{\mathbf{A}(t-\tau)\} \mathbf{B u}(\tau) d \tau \tag{23}
\end{equation*}
$$

From the output equation (10) and equation (23), we obtain the solution of the continuous-time LTI state-space model in $t \geq t_{0}$ as

$$
\begin{equation*}
\mathbf{y}(t)=\mathbf{C} \exp \left\{\mathbf{A}\left(t-t_{0}\right)\right\} \mathbf{x}\left(t_{0}\right)+\mathbf{C} \int_{t_{0}}^{t} \exp \{\mathbf{A}(t-\tau)\} \mathbf{B u}(\tau) d \tau \tag{24}
\end{equation*}
$$

Solution of LTI State-Space Models

Discrete Time:

The solution of the discrete-time LTI state equation (11) in $k \geq k_{0}$ is given by

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{A}^{k-k_{0}} \mathbf{x}_{k_{0}}+\sum_{i=1}^{k-k_{0}} \mathbf{A}^{k-k_{0}-i} \mathbf{B} \mathbf{u}_{i+k_{0}-1} \tag{25}
\end{equation*}
$$

From the output equation (12) and equation (25), we obtain the solution of the discrete-time LTI state-space model in $k \geq k_{0}$ as

$$
\begin{equation*}
\mathbf{y}_{k}=\mathbf{C A}^{k-k_{0}} \mathbf{x}_{k_{0}}+\mathbf{C} \sum_{i=1}^{k-k_{0}} \mathbf{A}^{k-k_{0}-i} \mathbf{B} \mathbf{u}_{i+k_{0}-1} \tag{26}
\end{equation*}
$$

Discretization...

Discretization

Time-Discretization of LTI Models:

Consider a continuous-time LTI state-space model of the form (9). Using a sampling period T and considering that $\mathbf{u}(\tau)=\mathbf{u}_{k}, \tau \in\left[t_{k}, t_{k+1}\right)$, one can obtain the following discrete-time version of (9):

$$
\begin{gather*}
\mathbf{x}_{k+1}=\mathbf{A}_{\mathrm{d}} \mathbf{x}_{k}+\mathbf{B}_{\mathrm{d}} \mathbf{u}_{k} \tag{27}\\
\mathbf{y}_{k}=\mathbf{C}_{\mathrm{d}} \mathbf{x}_{k} \tag{28}
\end{gather*}
$$

where

$$
\mathbf{A}_{\mathrm{d}}=\exp \{\mathbf{A} T\} \quad \mathbf{B}_{\mathrm{d}}=\int_{0}^{T} \exp \{\mathbf{A} \delta\} d \delta \mathbf{B} \quad \mathbf{C}_{\mathrm{d}}=\mathbf{C}
$$

This method is called zero-order hold (ZOH).

Stability ...

Stability of Continuous-Time LTI Systems

Definition:

Consider a continuous-time LTI system modeled by (9)-(10). This system is said to be stable (in the classic sense) if, for $\mathbf{u}(t) \equiv \mathbf{0}_{n_{u} \times 1}$,

- $\|\mathbf{y}(t)\| \leq M<\infty, \quad \forall t>t_{0}$
- $\lim _{t \rightarrow \infty}\|\mathbf{y}(t)\|=0$

Stability of Continuous-Time LTI Systems

Stability Condition:

Consider a continuous-time LTI system modeled by (9)-(10). Denote the eigenvalues of the state matrix \mathbf{A} by $\lambda_{i}, i=1, \ldots, n_{x}$. A necessary and sufficient condition for stability (in the classic sense) of this system is

$$
\begin{equation*}
\operatorname{real}\left(\lambda_{i}\right)<0, i=1, \ldots, n_{x} \tag{29}
\end{equation*}
$$

Otherwise, the system is said to be unstable.

Stability of Discrete-Time LTI Systems

Definition:

Consider a discrete-time LTI system modeled by (11)-(12). This system is said to be stable (in the classic sense) if, for $\mathbf{u}_{k} \equiv \mathbf{0}_{n_{u} \times 1}$,

- $\left\|\mathbf{y}_{k}\right\| \leq M<\infty, \quad \forall k>k_{0}$
- $\lim _{k \rightarrow \infty}\left\|\mathbf{y}_{k}\right\|=0$

Stability of Discrete-Time LTI Systems

Stability Condition:

Consider a discrete-time LTI system modeled by (11)-(12). Denote the eigenvalues of the state matrix \mathbf{A} by $\lambda_{i}, i=1, \ldots, n_{x}$. A necessary and sufficient stability condition (in the classic sense) of this system is

$$
\begin{equation*}
\left|\lambda_{i}\right|<1, i=1, \ldots, n_{x} \tag{30}
\end{equation*}
$$

Otherwise, the system is said to be unstable.

Controllability...

Controllability of LTI Systems

Definition:

- Consider the continuous-time LTI state-space model (9)-(10). This model is said to be controllable from $\mathbf{x}\left(t_{0}\right)$ if

$$
\begin{equation*}
\exists \mathbf{u}(t), t \in\left[t_{0}, t_{f}\right], t_{f}<\infty \tag{31}
\end{equation*}
$$

such that $\mathbf{x}\left(t_{f}\right)=0$.

- If the model is controllable from any $\mathbf{x}\left(t_{0}\right) \in \mathbb{R}^{n_{x}}$, then it is said to be completely controllable.

Remark:

A similar definition can be formulated for discrete-time LTI systems modeled by (11)-(12).

Controllability of LTI Systems

Controllability Condition:

For an LTI system modeled by (9) or (11) to be completely controllable, it is necessary and sufficient that

$$
\begin{equation*}
\operatorname{rank}(\mathcal{C})=n_{x} \tag{32}
\end{equation*}
$$

where \mathcal{C} is the controllability matrix defined by

$$
\mathcal{C} \triangleq\left[\begin{array}{lllll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B} & \ldots & \mathbf{A}^{n-1} \mathbf{B} \tag{33}
\end{array}\right]
$$

Observability...

Observability of LTI Systems

Definition:

- Consider the continuous-time LTI state-space model (9)-(10). This model is said to be observable at the point $\mathbf{x}\left(t_{0}\right)$ if it is possible to determine $\mathbf{x}\left(t_{0}\right)$ from

$$
\begin{equation*}
\mathbf{u}(t) \text { and } \mathbf{y}(t), t \in\left[t_{0}, t_{f}\right] \tag{34}
\end{equation*}
$$

for some $t_{f}<\infty$.

- If the model is observable at any point $\mathbf{x}\left(t_{0}\right) \in \mathbb{R}^{n_{x}}$, then it is said to be completely observable.

Remark:

A similar definition can be formulated for discrete-time LTI systems modeled by (11)-(12).

Observabilidade de Sistemas LIT

Observability Condition:

For the LTI system described by (9)-(10) or (11)-(12) to be completely observable, it is necessary and sufficient that

$$
\begin{equation*}
\operatorname{rank}(\mathcal{O})=n_{x} \tag{35}
\end{equation*}
$$

where \mathcal{O} is the observability matrix defined by

$$
\mathcal{O} \triangleq\left[\begin{array}{c}
\mathrm{C} \tag{36}\\
\mathrm{CA} \\
\mathrm{CA}^{2} \\
\vdots \\
\mathrm{CA}^{n_{x}-1}
\end{array}\right]
$$

Stabilizability and Detectability

Stabilizability:

A system is said to be stabilizable if all its uncontrollable states are stable.

Detectability:

A system is said to be detectable if all its unobservable states are stable.

References...

References

围 Chen, C.-T. Linear System Theory and Design. New York: Oxford University Press, 1999.

圊 Ogata, K. Engenharia de Controle Moderno. Rio de Janeiro: LTC, 2000.

[^0]: ${ }^{1}$ Linear time-invariant.

[^1]: ${ }^{2}$ Single Input Single Output.

