MP-208

Optimal Filtering with Aerospace Applications Section 2.3: Set Theory

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

> São José dos Campos - SP 2023

1 Preliminary Definitions and Notation

- Operations Between Sets
- 3 Other Important Definitions
- Important Results

Preliminary Definitions and Notation ...

Preliminary Definitions and Notation

Definition:

Set is a collection of objects called elements or members.

A set can be represented by an explicit list of its elements ζ_i , i = 1, 2, ..., n:

 $\mathcal{A} = \{\zeta_1, \zeta_2, ..., \zeta_n\}$

or by the properties of its elements, e.g.,

 $\mathcal{B} = \{ \text{all the positive integers} \}$

Remarks:

- Ø: Empty set (which does not contain any element).
- \mathcal{U} : Universal set (which contains all possible elements).

Belongs to/Element of:

If an element ζ_i belongs to a set \mathcal{A} , we denote $\zeta_i \in \mathcal{A}$. Otherwise, we denote $\zeta_i \notin \mathcal{A}$.

Inclusion:

A set \mathcal{B} is said to be contained inside a set \mathcal{A} if all the elements of \mathcal{B} are also elements of \mathcal{A} . We denote this relation by $\mathcal{B} \subset \mathcal{A}$. We can alternatively say that \mathcal{B} is a subset of \mathcal{A} . Otherwise, if \mathcal{B} is not contained inside \mathcal{A} , we denote $\mathcal{B} \not\subset \mathcal{A}$.

Equality:

A set A is said to be equal to another set B, which is denoted by A = B, if they have the same elements.

Venn Diagram:

It is a useful and intuitive graphical tool for representing sets, their elements, their relations, and operations. For example, in the Venn diagram below, $\zeta_1 \in \mathcal{A}, \zeta_2 \in \mathcal{A}, \zeta_2 \in \mathcal{B}, \zeta_1 \notin \mathcal{B}, \mathcal{B} \subset \mathcal{A}$, and $\mathcal{A} \not\subset \mathcal{B}$.

Operations Between Sets...

Union:

The union (also called "sum") of two sets A and B is a third set C whose elements belong to A or to B or to both. We denote this operation by:

 $\mathcal{C}=\mathcal{A}\cup\mathcal{B}$

Intersection:

The intersection (also called product) of two sets A and B is a set C whose elements belong to A and B, simultaneously. We denote this operation by:

 $\mathcal{C}=\mathcal{A}\cap\mathcal{B}$

Other Important Definitions

Other Important Definitions

Mutually Exclusive Sets:

Two sets A and B are said to be mutually exclusive (or disjoint) if they have no common elements, *i.e.*,

$$\mathcal{A} \cap \mathcal{B} = \emptyset$$

Additionally, many (more than two) sets $A_1, A_2, ..., A_n$ are said to be mutually exclusive if

$$\mathcal{A}_i \cap \mathcal{A}_j = \emptyset , \forall i \neq j$$

Other Important Definitions

Partition:

A partition \mathcal{P} of a set \mathcal{S} is a collection of mutually exclusive subsets $\mathcal{A}_i, i = 1, ..., n$, of \mathcal{S} whose union is equal to \mathcal{S} , *i.e.*,

$$\mathcal{P} = [\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_n]$$

such that

$$\mathcal{A}_1 \cup \mathcal{A}_2 \cup ... \cup \mathcal{A}_n = \mathcal{S} \quad \mathcal{A}_i \cap \mathcal{A}_j = \emptyset \ , \forall i \neq j$$

Other Important Definitions

Complement:

The complement $\bar{\mathcal{A}}$ of a set \mathcal{A} is a set containing all the elements of \mathcal{U} that do not belong to \mathcal{A} .

In a Venn diagram:

One can show that:

•
$$\mathcal{A} \cup \bar{\mathcal{A}} = \mathcal{U}$$

•
$$\mathcal{A} \cap \bar{\mathcal{A}} = \emptyset$$

•
$$\bar{\mathcal{A}} = \mathcal{A}$$

• $\mathcal{A} = \mathcal{A}$ • $\overline{\mathcal{U}} = \emptyset$ and $\overline{\emptyset} = \mathcal{U}$

Cartesian Product:

The Cartesian product between two sets ${\mathcal A}$ and ${\mathcal B}$ is defined by

 $\mathcal{A} imes \mathcal{B} riangleq \{(a, b) : a \in \mathcal{A}, b \in \mathcal{B}\}$

The above definition can be extended to multiple sets A_1 , A_2 , ..., A_n as

$$\mathcal{A}_1 imes \mathcal{A}_2 imes \cdots imes \mathcal{A}_n riangleq \left\{ (a_1, a_2, ..., a_n) : a_i \in \mathcal{A}_i, orall i
ight\}$$

Important Results...

Basic Identities:

- Commutative laws: $\mathcal{A} \cup \mathcal{B} = \mathcal{B} \cup \mathcal{A}, \ \mathcal{A} \cap \mathcal{B} = \mathcal{B} \cap \mathcal{A}.$
- Associative laws:

$$(\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C} = \mathcal{A} \cup (\mathcal{B} \cup \mathcal{C})$$

 $(\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C} = \mathcal{A} \cap (\mathcal{B} \cap \mathcal{C})$

• Distributive laws:

$$\mathcal{C} \cup (\mathcal{A} \cap \mathcal{B}) = (\mathcal{C} \cup \mathcal{A}) \cap (\mathcal{C} \cup \mathcal{B})$$
$$\mathcal{C} \cap (\mathcal{A} \cup \mathcal{B}) = (\mathcal{C} \cap \mathcal{A}) \cup (\mathcal{C} \cap \mathcal{B})$$
• Equality: $\mathcal{A} = \mathcal{B}$ iff $\mathcal{A} \subset \mathcal{B}$ and $\mathcal{B} \subset \mathcal{A}$.

De Morgan's Laws:

They are the following identities:

 $\overline{\mathcal{A}\cup\mathcal{B}}=\bar{\mathcal{A}}\cap\bar{\mathcal{B}}$

$$\overline{\mathcal{A}\cap\mathcal{B}}=\bar{\mathcal{A}}\cup\bar{\mathcal{B}}$$

How to prove them?

Duality Principle:

If in a set identity, all the unions are replaced by intersections (and vice versa) and all occurrencies of \emptyset are substituted by \mathcal{U} (and vice versa), the resulting identity is true.

Examples:

- Consider the identity $\mathcal{U} \cup \mathcal{A} = \mathcal{U}$. From this identity and the above result, one can immediately prove that $\emptyset \cap \mathcal{A} = \emptyset$.
- Consider the identity $\mathcal{A} \cap (\mathcal{B} \cup \mathcal{C}) = (\mathcal{A} \cap \mathcal{B}) \cup (\mathcal{A} \cap \mathcal{C})$. From this identity and the above result, one can immediately prove that $\mathcal{A} \cup (\mathcal{B} \cap \mathcal{C}) = (\mathcal{A} \cup \mathcal{B}) \cap (\mathcal{A} \cup \mathcal{C})$.

References...

Papoulis, A.; Pillai, S. U. **Probability, Random Variables, and Stochastic Processes**. New York: McGraw-Hill, 2002.

Meyer, P. L. Introductory Probability and Statistical Applications. Addison-Wesley, 1970.