Optimal Filtering with Aerospace Applications Section 2.3: Set Theory

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

São José dos Campos - SP 2023

Contents

(1) Preliminary Definitions and Notation
(2) Operations Between Sets
(3) Other Important Definitions
(4) Important Results

Preliminary Definitions and Notation...

Preliminary Definitions and Notation

Definition:

Set is a collection of objects called elements or members.

A set can be represented by an explicit list of its elements $\zeta_{i}, i=1,2, \ldots, n$:

$$
\mathcal{A}=\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right\}
$$

or by the properties of its elements, e.g.,

$$
\mathcal{B}=\{\text { all the positive integers }\}
$$

Remarks:

- \emptyset : Empty set (which does not contain any element).
- \mathcal{U} : Universal set (which contains all possible elements).

Relations Between Sets

Belongs to/Element of:

If an element ζ_{i} belongs to a set \mathcal{A}, we denote $\zeta_{i} \in \mathcal{A}$. Otherwise, we denote $\zeta_{i} \notin \mathcal{A}$.

Inclusion:

A set \mathcal{B} is said to be contained inside a set \mathcal{A} if all the elements of \mathcal{B} are also elements of \mathcal{A}. We denote this relation by $\mathcal{B} \subset \mathcal{A}$. We can alternatively say that \mathcal{B} is a subset of \mathcal{A}. Otherwise, if \mathcal{B} is not contained inside \mathcal{A}, we denote $\mathcal{B} \not \subset \mathcal{A}$.

Equality:

A set \mathcal{A} is said to be equal to another set \mathcal{B}, which is denoted by $\mathcal{A}=\mathcal{B}$, if they have the same elements.

Relations Between Sets

Venn Diagram:

It is a useful and intuitive graphical tool for representing sets, their elements, their relations, and operations. For example, in the Venn diagram below, $\zeta_{1} \in \mathcal{A}, \zeta_{2} \in \mathcal{A}, \zeta_{2} \in \mathcal{B}, \zeta_{1} \notin \mathcal{B}, \mathcal{B} \subset \mathcal{A}$, and $\mathcal{A} \not \subset \mathcal{B}$.

Operations Between Sets. . .

Operations Between Sets

Union:

The union (also called "sum") of two sets \mathcal{A} and \mathcal{B} is a third set \mathcal{C} whose elements belong to \mathcal{A} or to \mathcal{B} or to both. We denote this operation by:

$$
\mathcal{C}=\mathcal{A} \cup \mathcal{B}
$$

In a Venn diagram:

Operations Between Sets

Intersection:

The intersection (also called product) of two sets \mathcal{A} and \mathcal{B} is a set \mathcal{C} whose elements belong to \mathcal{A} and \mathcal{B}, simultaneously. We denote this operation by:

$$
\mathcal{C}=\mathcal{A} \cap \mathcal{B}
$$

In a Venn diagram:

Other Important Definitions...

Other Important Definitions

Mutually Exclusive Sets:

Two sets \mathcal{A} and \mathcal{B} are said to be mutually exclusive (or disjoint) if they have no common elements, i.e.,

$$
\mathcal{A} \cap \mathcal{B}=\emptyset
$$

Additionally, many (more than two) sets $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$ are said to be mutually exclusive if

$$
\mathcal{A}_{i} \cap \mathcal{A}_{j}=\emptyset, \forall i \neq j
$$

In a Venn diagram:

Other Important Definitions

Partition:

A partition \mathcal{P} of a set \mathcal{S} is a collection of mutually exclusive subsets $\mathcal{A}_{i}, i=$ $1, \ldots, n$, of \mathcal{S} whose union is equal to \mathcal{S}, i.e.,

$$
\mathcal{P}=\left[\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}\right]
$$

such that

$$
\mathcal{A}_{1} \cup \mathcal{A}_{2} \cup \ldots \cup \mathcal{A}_{n}=\mathcal{S} \quad \mathcal{A}_{i} \cap \mathcal{A}_{j}=\emptyset, \forall i \neq j
$$

In a Venn diagram:

Other Important Definitions

Complement:

The complement $\overline{\mathcal{A}}$ of a set \mathcal{A} is a set containing all the elements of \mathcal{U} that do not belong to \mathcal{A}.

In a Venn diagram:

One can show that:

- $\mathcal{A} \cup \overline{\mathcal{A}}=\mathcal{U}$
- $\mathcal{A} \cap \overline{\mathcal{A}}=\emptyset$
- $\overline{\overline{\mathcal{A}}}=\mathcal{A}$
- $\overline{\mathcal{U}}=\emptyset$ and $\bar{\emptyset}=\mathcal{U}$

Other Important Definitions

Cartesian Product:

The Cartesian product between two sets \mathcal{A} and \mathcal{B} is defined by

$$
\mathcal{A} \times \mathcal{B} \triangleq\{(a, b): a \in \mathcal{A}, b \in \mathcal{B}\}
$$

The above definition can be extended to multiple sets $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$ as

$$
\mathcal{A}_{1} \times \mathcal{A}_{2} \times \cdots \times \mathcal{A}_{n} \triangleq\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right): a_{i} \in \mathcal{A}_{i}, \forall i\right\}
$$

Important Results...

Important Results

Basic Identities:

- Commutative laws: $\mathcal{A} \cup \mathcal{B}=\mathcal{B} \cup \mathcal{A}, \mathcal{A} \cap \mathcal{B}=\mathcal{B} \cap \mathcal{A}$.
- Associative laws:

$$
\begin{aligned}
& (\mathcal{A} \cup \mathcal{B}) \cup \mathcal{C}=\mathcal{A} \cup(\mathcal{B} \cup \mathcal{C}) \\
& (\mathcal{A} \cap \mathcal{B}) \cap \mathcal{C}=\mathcal{A} \cap(\mathcal{B} \cap \mathcal{C})
\end{aligned}
$$

- Distributive laws:

$$
\begin{aligned}
& \mathcal{C} \cup(\mathcal{A} \cap \mathcal{B})=(\mathcal{C} \cup \mathcal{A}) \cap(\mathcal{C} \cup \mathcal{B}) \\
& \mathcal{C} \cap(\mathcal{A} \cup \mathcal{B})=(\mathcal{C} \cap \mathcal{A}) \cup(\mathcal{C} \cap \mathcal{B})
\end{aligned}
$$

- Equality: $\mathcal{A}=\mathcal{B}$ iff $\mathcal{A} \subset \mathcal{B}$ and $\mathcal{B} \subset \mathcal{A}$.

Important Results

De Morgan's Laws:

They are the following identities:

$$
\overline{\mathcal{A} \cup \mathcal{B}}=\overline{\mathcal{A}} \cap \overline{\mathcal{B}}
$$

$$
\overline{\mathcal{A} \cap \mathcal{B}}=\overline{\mathcal{A}} \cup \overline{\mathcal{B}}
$$

How to prove them?

Important Results

Duality Principle:

If in a set identity, all the unions are replaced by intersections (and vice versa) and all occurrencies of \emptyset are substituted by \mathcal{U} (and vice versa), the resulting identity is true.

Examples:

- Consider the identity $\mathcal{U} \cup \mathcal{A}=\mathcal{U}$. From this identity and the above result, one can immediately prove that $\emptyset \cap \mathcal{A}=\emptyset$.
- Consider the identity $\mathcal{A} \cap(\mathcal{B} \cup \mathcal{C})=(\mathcal{A} \cap \mathcal{B}) \cup(\mathcal{A} \cap \mathcal{C})$. From this identity and the above result, one can immediately prove that $\mathcal{A} \cup$ $(\mathcal{B} \cap \mathcal{C})=(\mathcal{A} \cup \mathcal{B}) \cap(\mathcal{A} \cup \mathcal{C})$.

References...

References

䍰 Papoulis, A.; Pillai, S. U. Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, 2002.
圊 Meyer, P. L. Introductory Probability and Statistical Applications. Addison-Wesley, 1970.

