Optimal Filtering with Aerospace Applications Section 2.4: Probability Theory

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

$$
\begin{gathered}
\text { São José dos Campos - SP } \\
2023
\end{gathered}
$$

Contents

(1) Probability Space
(2) Conditional Probability
(3) Important Identities

44 Independence of Events

Probability Space. . .

Probability Space

Definition:

A probability space is an abstract description of a probabilistic experiment. It is usually denoted by the triplet (Ω, \mathcal{F}, P), in which:

- Ω is the sampling space of the experiment
- \mathcal{F} is the σ-algebra of the experiment
- P is the probability measure

Probability Space

Sampling Space Ω :

It is the set constituted of all the possible results (called outcomes) of a certain random experiment.

Examples:

- Experiment with a coin: $\Omega=\{$ head, tail $\}$.
- Experiment with a die: $\Omega=\{1,2, \ldots, 6\}$.

Probability Space

σ-algebra \mathcal{F} :
It is a class (collection of sets) constituted of all viable subsets of Ω. These subsets are called events. \mathcal{F} is such that:

- $\Omega \in \mathcal{F}$
- If $A \in \mathcal{F}$, then $\bar{A} \in \mathcal{F}$
- If $A_{i} \in \mathcal{F}, i=1,2, \ldots$, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{F}$

Example:

In an experiment with a die where we want to know if an outcome is odd or even, a suitable σ-algebra is:

$$
\mathcal{F}=\{\emptyset, \Omega,\{1,3,5\},\{2,4,6\}\}
$$

Probability Space

Probability Measure P :

It is a function $P: \mathcal{F} \rightarrow[0,1] \subset \mathbb{R}$ that satisfies the following three conditions:
(1) $P(A) \geq 0, \forall A \in \mathcal{F}$
(2) $P(\Omega)=1$

- If $A \cap B=\emptyset$, then $P(A \cup B)=P(A)+P(B)$

The conditions 1-3 are the so-called Axioms of Probability.

Remark:

Axiom 3 can be extented to infinitely many mutually exclusive events $A_{1}, A_{2}, A_{3}, \ldots$:

$$
P\left(A_{1} \cup A_{2} \cup \cdots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots
$$

Conditional Probability...

Conditional Probability

Definition:

The conditional probability of an event A given another event M with nonzero probability is denoted by $P(A \mid M)$ and defined by:

$$
P(A \mid M) \triangleq \frac{P(A \cap M)}{P(M)}
$$

Properties:

- The measure $P(\cdot \mid M)$ satisfies the Axioms of Probability
- If $M \subset A$, then $P(A \mid M)=1$
- If $A \subset M$, then $P(A \mid M) \geq P(A)$

Important Identities. . .

Important Identities

Total Probability Theorem:

Consider $\mathcal{P}=\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ as a partition of Ω and B as an arbitrary event.

The Total Probability Theorem says that:

$$
P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+\cdots+P\left(B \mid A_{n}\right) P\left(A_{n}\right)
$$

Important Identities

Bayes' Rule:

Consider two arbitrary events $A, B \in \mathcal{F}$. Assume that $P(A) \neq 0$ and $P(B) \neq 0$. The Bayes' rule (or theorem) says that:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Remark:

Bayes' rule is useful in statistical inference by the so-called Bayesian approach. In this application of the above result, event A is a hypothesis, event B is an evidence, $P(A \mid B)$ is the a posteriori probability (of the hypothesis, given the evidence) and $P(B \mid A)$ is the likelihood, which is the probability of the evidence B, assuming that the hypothesis A is true.

Important Identities

Chain Rule:

Consider the arbitrary events $A_{1}, \ldots, A_{n} \in \mathcal{F}$. The chain rule says that:

$$
P\left(\bigcap_{i=1}^{n} A_{i}\right)=P\left(A_{n} \mid \bigcap_{i=1}^{n-1} A_{i}\right) P\left(A_{n-1} \mid \bigcap_{i=1}^{n-2} A_{i}\right) \ldots P\left(A_{2} \mid A_{1}\right) P\left(A_{1}\right)
$$

Independence of Events...

Independence of Events

Independence of Two Events:

Two events $A_{1}, A_{2} \in \mathcal{F}$ are said to be (statistically) independent if

$$
P\left(A_{1} \cap A_{2}\right)=P\left(A_{1}\right) P\left(A_{2}\right)
$$

Independence of Three Events:
Three events $A_{1}, A_{2}, A_{3} \in \mathcal{F}$ are said to be (statistically) independent if

$$
P\left(A_{i} \cap A_{j}\right)=P\left(A_{i}\right) P\left(A_{j}\right), \quad i \neq j
$$

and

$$
P\left(A_{1} \cap A_{2} \cap A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)
$$

Independence of Events

Independence of n Events:

The events $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{F}$ are said to be (statistically) independent if any $k<n$ of them are independent and

$$
P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right)=P\left(A_{1}\right) P\left(A_{2}\right) \cdots P\left(A_{n}\right)
$$

As the independence of $k=3$ events has been defined (in the previous slide), one can conclude that the above definition is complete.

References...

References

目 Papoulis, A.; Pillai, S. U. Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, 2002.
堛 Ross, S. M. A First Course in Probability. New York: Prentice Hall, 2002.

