MP-208

Optimal Filtering with Aerospace Applications Section 2.5: Random Variables

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

> São José dos Campos - SP 2023

Contents

Definition

- 2 Probability Distribution Function
- Operation Probability Density Function
- 4 Expected Value
- **5** Standard Distributions
- 6 Function of a Random Variable

Definition...

Definition

Random Variable:

Consider a probability space (Ω, \mathcal{F}, P) . A random variable (RV) is a map $X : \Omega \to E$, where *E* is a set of numbers. The function X is arbitrary, except for the following restriction:

$$A(x) \triangleq \{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F}, \ \forall x \in E$$

and $P(A(\infty)) = 1$

Remark:

We often abbreviate:

•
$$\left\{\omega\in\Omega:X(\omega)\leq x\right\}$$
 by $\left\{X\leq x\right\}$

•
$$\left\{\omega \in \Omega : x_1 \leq X(\omega) \leq x_2\right\}$$
 by $\{x_1 \leq X \leq x_2\}$

etc.

Definition

Types of Random Variables:

• **Discrete:** the set *E* is finite or countably infinite (*e.g.*, $E = \mathbb{N}$)

• **Continuous:** $E \subseteq \mathbb{R}$

Probability Distribution Function...

Probability Distribution Function

This course is mainly concerned with continuous random variables.

Definition:

The probability distribution function ¹ of a RV X is defined by:

$$F_X(x) \triangleq P(A(x)), \quad \forall x \in \mathbb{R}$$

¹Also known as cumulative distribution function and often abbreviated by cdf.

Properties:

I and
$$F_X(\infty) = 1$$
 and $F_X(-\infty) = 0$
If $x_1 < x_2$, then $F_X(x_1) \le F_X(x_2)$
 $P(\{X > x\}) = 1 - F_X(x)$
 $P(\{x_1 < X \le x_2\}) = F_X(x_2) - F_X(x_1)$

Remark:

We often abbreviate:

• $F_X(x)$ by F(x)

Probability Density Function

Probability Density Function

Definition:

The probability density function (pdf) of a RV X is defined as:

$$f_X(x) \triangleq \frac{dF_X(x)}{dx}$$

We often abbreviate $f_X(x)$ by f(x).

Properties:

•
$$f_X(x) \ge 0$$

• $\int_{-\infty}^{+\infty} f_X(x) dx = 1$

• $P(\{x_1 < X \le x_2\}) = \int_{x_1}^{x_2} f_X(x) dx$

Expected Value...

Definition:

The expected value E(X) of a RV X is defined by:

$$E(X) \triangleq \int_{-\infty}^{+\infty} x f_X(x) dx$$

Properties:

Consider a constant $a \in \mathbb{R}$ and some RVs X_1, X_2, \ldots, X_n .

Some Standard Distributions...

Standard Distributions: Gaussian

Probability Density Function:

A RV X is said to be Gaussian (or normal) with parameters μ and σ^2 if its pdf has the form:

$$f_X(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-rac{(x-\mu)^2}{2\sigma^2}
ight\}$$

Standard Distributions: Gaussian

Probability Distribution Function:

The cdf of a Gaussian RV X is given by:

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

where

$$\Phi(x) \triangleq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left\{-\frac{\xi^2}{2}\right\} d\xi$$

Notation:

To affirm that a RV X is Gaussian with parameters μ and σ^2 , we use:

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

Standard Distributions: Uniform

Probability Density Function:

A RV X is said to be uniform in the interval (or support) $[a, b] \subset \mathbb{R}$, with $-\infty < a < b < +\infty$, if its pdf has the form:

$$f_X(x) = \left\{ egin{array}{cc} rac{1}{b-a}, & a \leq x \leq b \ 0, & ext{otherwise} \end{array}
ight.$$

Probability Distribution Function:

The cdf of a uniform RV X is given by:

$$F_X(x) = \left\{ egin{array}{cc} 0, & x < a \ rac{x-a}{b-a}, & a \leq x < b \ 1, & x \geq b \end{array}
ight.$$

Notation:

To affirm that a RV X has uniform distribution in [a, b], we write:

 $X \sim \mathcal{U}(a, b)$

Standard Distributions: Exponential

Probability Density Function:

A RV X is said to be exponential with parameter $\lambda > 0$ if its pdf has the form:

$$f_X(x) = \begin{cases} \lambda \exp\{-\lambda x\}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Probability Distribution Function:

The cdf of an exponential RV X is given by:

$$F_X(x) = \begin{cases} 1 - \exp\{-\lambda x\}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Notation:

To affirm that a RV X is exponential with parameter λ , we use:

$X \sim \mathcal{E}(\lambda)$

Standard Distributions: Gamma

Probability Density Function:

A RV X is said to be gamma-distributed with parameters $\alpha > 0$ and $\beta > 0$ if its pdf has the form:

$$f_X(x) = \left\{ egin{array}{c} rac{x^{lpha-1}}{\Gamma(lpha)eta^lpha} \exp\left\{-x/eta
ight\}, & x \geq 0 \ 0, & x < 0 \end{array}
ight.$$

where

or

$$\Gamma(\alpha) \triangleq \int_0^\infty x^{\alpha - 1} \exp\{-x\} dx$$

$$\Gamma(n) = (n - 1)! \quad \text{se } n \in \mathbb{N}$$

20 / 26

Standard Distributions: Gamma

Probability Distribution Function:

The cdf of a gamma-distributed RV X, for $\alpha = n$, is given by:

$$F_X(x) = \begin{cases} 1 - \sum_{k=0}^{n-1} \frac{x^k}{\beta^k k!} \exp\{-x/\beta\} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Notation:

To affirm that a RV X is gamma-distributed with parameters α and β , we use:

$$X \sim \mathcal{G}(\alpha, \beta)$$

Function of a Random Variable...

Function of a Random Variable

Consider a RV $X : \Omega \to \mathbb{R}$ and a function $g : \mathbb{R} \to \mathbb{R}$ such that:

• the domain of g contains the image of X.

•
$$\{\omega \in \Omega : g(X(\omega) \leq y\} \in \mathcal{F}.$$

In this case,

 $Y(\omega) = g(X(\omega))$ is also a random variable.

Theorem:

Consider a RV $X : \Omega \to \mathbb{R}$ with pdf f_X . Suppose that $g : \mathbb{R} \to \mathbb{R}$, besides satisfying the conditions given in the previous slide, be strictly monotonic and differentiable. In this case, the RV Y = g(X) is characterized by the pdf

$$f_Y(y) = f_X\left(g^{-1}(y)\right) \left| \frac{d}{dy}g^{-1}(y) \right|$$

References...

Papoulis, A.; Pillai, S. U. Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill. 2002.

Ross, S. M. A First Course in Probability. New York: Prentice Hall, 2002.