Optimal Filtering with Aerospace Applications Section 2.5: Random Variables

Prof. Dr. Davi Antônio dos Santos
Instituto Tecnológico de Aeronáutica
www.professordavisantos.com

São José dos Campos - SP
2023

Contents

(1) Definition
(2) Probability Distribution Function
(3) Probability Density Function
(4) Expected Value
(5) Standard Distributions
(6) Function of a Random Variable

Definition...

Definition

Random Variable:

Consider a probability space (Ω, \mathcal{F}, P). A random variable (RV) is a map $X: \Omega \rightarrow E$, where E is a set of numbers. The function X is arbitrary, except for the following restriction:

$$
\begin{gathered}
A(x) \triangleq\{\omega \in \Omega: X(\omega) \leq x\} \in \mathcal{F}, \forall x \in E \\
\text { and } P(A(\infty))=1
\end{gathered}
$$

Remark:

We often abbreviate:

- $\{\omega \in \Omega: X(\omega) \leq x\}$ by $\{X \leq x\}$
- $\left\{\omega \in \Omega: x_{1} \leq X(\omega) \leq x_{2}\right\}$ by $\left\{x_{1} \leq X \leq x_{2}\right\}$
- etc.

Definition

Types of Random Variables:

- Discrete: the set E is finite or countably infinite (e.g., $E=\mathbb{N}$)

- Continuous: $E \subseteq \mathbb{R}$

Probability Distribution Function...

Probability Distribution Function

This course is mainly concerned with continuous random variables.

Definition:

The probability distribution function ${ }^{1}$ of a $\mathrm{RV} X$ is defined by:

$$
F_{X}(x) \triangleq P(A(x)), \quad \forall x \in \mathbb{R}
$$

${ }^{1}$ Also known as cumulative distribution function and often abbreviated by cdf.

Probability Distribution Function

Properties:

(1) $F_{X}(\infty)=1$ and $F_{X}(-\infty)=0$
(2) If $x_{1}<x_{2}$, then $F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right)$
(3) $P(\{X>x\})=1-F_{X}(x)$
(1) $P\left(\left\{x_{1}<X \leq x_{2}\right\}\right)=F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right)$

Remark:
We often abbreviate:

- $F_{X}(x)$ by $F(x)$

Probability Density Function...

Probability Density Function

Definition:

The probability density function (pdf) of a RV X is defined as:

$$
f_{X}(x) \triangleq \frac{d F_{X}(x)}{d x}
$$

We often abbreviate $f_{X}(x)$ by $f(x)$.
Properties:
(1) $f_{X}(x) \geq 0$
(2) $\int_{-\infty}^{+\infty} f_{X}(x) d x=1$
(8) $P\left(\left\{x_{1}<X \leq x_{2}\right\}\right)=\int_{x_{1}}^{x_{2}} f_{X}(x) d x$

Expected Value...

Expected Value

Definition:

The expected value $E(X)$ of a $\mathrm{RV} X$ is defined by:

$$
E(X) \triangleq \int_{-\infty}^{+\infty} x f_{X}(x) d x
$$

Properties:

Consider a constant $a \in \mathbb{R}$ and some $R V$ s $X_{1}, X_{2}, \ldots, X_{n}$.
(1) If $X_{1}(\omega)=a, \forall \omega \in \Omega$, then $E\left(X_{1}\right)=a$
(2) $E\left(a X_{1}\right)=a E\left(X_{1}\right)$
(3) $E\left(X_{1}+X_{2}+\cdots+X_{n}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{n}\right)$

Some Standard Distributions...

Standard Distributions: Gaussian

Probability Density Function:

A RV X is said to be Gaussian (or normal) with parameters μ and σ^{2} if its pdf has the form:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\}
$$

Standard Distributions: Gaussian

Probability Distribution Function:

The cdf of a Gaussian RV X is given by:

$$
F_{X}(x)=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

where

$$
\Phi(x) \triangleq \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left\{-\frac{\xi^{2}}{2}\right\} d \xi
$$

Notation:

To affirm that a RV X is Gaussian with parameters μ and σ^{2}, we use:

$$
X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)
$$

Standard Distributions: Uniform

Probability Density Function:

A $\mathrm{RV} X$ is said to be uniform in the interval (or support) $[a, b] \subset \mathbb{R}$, with $-\infty<a<b<+\infty$, if its pdf has the form:

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a}, & a \leq x \leq b \\
0, & \text { otherwise }
\end{array}\right.
$$

Standard Distributions: Uniform

Probability Distribution Function:

The cdf of a uniform RV X is given by:

$$
F_{X}(x)=\left\{\begin{array}{cc}
0, & x<a \\
\frac{x-a}{b-a}, & a \leq x<b \\
1, & x \geq b
\end{array}\right.
$$

Notation:

To affirm that a RV X has uniform distribution in $[a, b]$, we write:

$$
X \sim \mathcal{U}(a, b)
$$

Standard Distributions: Exponential

Probability Density Function:

A RV X is said to be exponential with parameter $\lambda>0$ if its pdf has the form:

$$
f_{X}(x)=\left\{\begin{array}{cc}
\lambda \exp \{-\lambda x\}, & x \geq 0 \\
0, & x<0
\end{array}\right.
$$

Standard Distributions: Exponential

Probability Distribution Function:

The cdf of an exponential RV X is given by:

$$
F_{X}(x)=\left\{\begin{array}{cc}
1-\exp \{-\lambda x\}, & x \geq 0 \\
0, & x<0
\end{array}\right.
$$

Notation:

To affirm that a RV X is exponential with parameter λ, we use:

$$
X \sim \mathcal{E}(\lambda)
$$

Standard Distributions: Gamma

Probability Density Function:

A $\mathrm{RV} X$ is said to be gamma-distributed with parameters $\alpha>0$ and $\beta>0$ if its pdf has the form:

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{x^{\alpha-1}}{\Gamma(\alpha) \beta^{\alpha}} \exp \{-x / \beta\}, & x \geq 0 \\
0, & x<0
\end{array}\right.
$$

where

$$
\Gamma(\alpha) \triangleq \int_{0}^{\infty} x^{\alpha-1} \exp \{-x\} d x
$$

or

$$
\Gamma(n)=(n-1)!\quad \text { se } n \in \mathbb{N}
$$

Standard Distributions: Gamma

Probability Distribution Function:

The cdf of a gamma-distributed $\mathrm{RV} X$, for $\alpha=n$, is given by:

$$
F_{X}(x)=\left\{\begin{array}{cc}
1-\sum_{k=0}^{n-1} \frac{x^{k}}{\beta^{k} k!} \exp \{-x / \beta\} & x \geq 0 \\
0 & x<0
\end{array}\right.
$$

Notation:

To affirm that a RV X is gamma-distributed with parameters α and β, we use:

$$
X \sim \mathcal{G}(\alpha, \beta)
$$

Function of a Random Variable...

Function of a Random Variable

Consider a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$ and a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that:

- the domain of g contains the image of X.
- $\{\omega \in \Omega: g(X(\omega) \leq y\} \in \mathcal{F}$.

In this case,

$$
Y(\omega)=g(X(\omega)) \text { is also a random variable. }
$$

Function of a Random Variable

Theorem:

Consider a $\mathrm{RV} X: \Omega \rightarrow \mathbb{R}$ with pdf f_{X}. Suppose that $g: \mathbb{R} \rightarrow \mathbb{R}$, besides satisfying the conditions given in the previous slide, be strictly monotonic and differentiable. In this case, the RV $Y=g(X)$ is characterized by the pdf

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|
$$

References...

References

目 Papoulis, A.; Pillai, S. U. Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, 2002.
堛 Ross, S. M. A First Course in Probability. New York: Prentice Hall, 2002.

