Optimal Filtering with Aerospace Applications Section 2.6: Random Vectors

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

São José dos Campos - SP 2023

Contents

(1) Definition
(2) Probability Distribution Function
(3) Probability Density Function
(4) Expected Value
(5) Independence
(6) Conditional Distribution
(7) Important Rules
(8) Gaussian Vector

Definition...

Definition

Random Vector:

Consider a probability space (Ω, \mathcal{F}, P). A continuous random vector is a map $X: \Omega \rightarrow \mathbb{R}^{n}$. The function X is arbitrary, except for the following restriction:

$$
\begin{gathered}
A(x) \triangleq\{\omega \in \Omega: \mathbf{X}(\omega) \leq \mathbf{x}\} \in \mathcal{F}, \forall \mathbf{x} \in \mathbb{R}^{n} \\
\text { and } P(A(\infty, \infty, \ldots, \infty))=1
\end{gathered}
$$

Remark:

We often abbreviate:

- $\{\omega \in \Omega: \mathbf{X}(\omega) \leq \mathbf{x}\}$ by $\{\mathbf{X} \leq \mathbf{x}\}$
- $\left\{\omega \in \Omega: \mathbf{x}_{1} \leq \mathbf{X}(\omega) \leq \mathbf{x}_{2}\right\}$ by $\left\{\mathbf{x}_{1} \leq \mathbf{X} \leq \mathbf{x}_{2}\right\}$
- etc.

Definition

Illustration of a Random Vector:

Probability Distribution Function ...

Probability Distribution Function

Definition:

The probability (cumulative) distribution function (cdf) of the random vector \mathbf{X} is defined by:

$$
F_{\mathbf{X}}(\mathbf{x}) \triangleq P(A(\mathbf{x})), \quad \forall \mathbf{x} \in \mathbb{R}^{n}
$$

Probability Distribution Function

Properties:

For simplicity, consider $n=2$ and denote the vector components as in $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and $\mathbf{X}=\left(X_{1}, X_{2}\right)$.
(1) $F_{\mathbf{X}}(\infty, \infty)=1, F_{\mathbf{X}}\left(-\infty, x_{2}\right)=0, F_{\mathbf{X}}\left(x_{1},-\infty\right)=0$.
(2) $P\left(\left\{a \leq X_{1} \leq b\right\} \cap\left\{c \leq X_{2} \leq d\right\}\right)=$

$$
F_{\mathbf{X}}(b, d)-F_{\mathbf{X}}(a, d)-F_{\mathbf{X}}(b, c)+F_{\mathbf{X}}(a, c)
$$

Remark:

We often abbreviate:

- $F_{\mathbf{X}}(\mathbf{x})$ by $F(\mathbf{x})$

Probability Density Function...

Probability Density Function

Definition:

The probability density function (pdf) of a random vector \mathbf{X} is defined as:

$$
f_{\mathbf{X}}(\mathbf{x}) \triangleq \frac{\partial^{n} F_{\mathbf{X}}(\mathbf{x})}{\partial x_{1} \partial x_{2} \ldots \partial x_{n}}
$$

We often abbreviate $f_{\mathbf{X}}(\mathbf{x})$ by $f(\mathbf{x})$.
Properties:
(1) $f_{X}(x) \geq 0$.
(2) $\int_{\mathbb{R}^{n}} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}=1$.
(3) $P(\{\mathbf{X} \in R\})=\int_{R} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}$, where $R \subset \mathbb{R}^{n}$ is a given set.

Marginal Statistics

Definition:

In multiple random variable theory, a marginal statistic (e.g., pdf or cdf) is a statistic that characterizes only part of the random variables.

Consider $n=2$ and denote the joint cdf by $F_{\mathbf{X}}(\mathbf{x}) \equiv F_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)$.
Marginal Distribution:

- $F_{X_{1}}\left(x_{1}\right)=F_{X_{1} X_{2}}\left(x_{1}, \infty\right)$ is the marginal distribution of X_{1}.
- $F_{X_{2}}\left(x_{2}\right)=F_{X_{1} X_{2}}\left(\infty, x_{2}\right)$ is the marginal distribution of X_{2}.

Marginal Density:

- $f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{2}$ is the marginal density of X_{1}.
- $f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{1}$ is the marginal density of X_{2}.

Expected Value...

Expected Value

Definition:

The expected value, expectation or mean of a random vector $\mathbf{X}: \Omega \rightarrow \mathbb{R}^{n}$ is defined by:

$$
\mathbf{m}_{\mathbf{x}}=E(\mathbf{X}) \triangleq \int_{\mathbb{R}^{n}} \mathbf{x} f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}
$$

Properties:

Consider a constant vector $\mathbf{a} \in \mathbb{R}^{n}$, a constant matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, and the random vectors $\mathbf{X}_{i}: \Omega \rightarrow \mathbb{R}^{n}, i=1, \ldots, m$.
(1) If $\mathbf{X}_{1}(\omega)=\mathbf{a}, \forall \omega \in \Omega$, then $E\left(\mathbf{X}_{1}\right)=\mathbf{a}$.
(2) $E\left(\mathbf{A} \mathbf{X}_{1}\right)=\mathbf{A} E\left(\mathbf{X}_{1}\right)$.
(3) $E\left(\mathbf{X}_{1}+\mathbf{X}_{2}+\cdots+\mathbf{X}_{n}\right)=E\left(\mathbf{X}_{1}\right)+E\left(\mathbf{X}_{2}\right)+\cdots+E\left(\mathbf{X}_{n}\right)$.
(9) $E(g(\mathbf{X})) \triangleq \int_{\mathbb{R}^{n}} g(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}) d \mathbf{x}$.

Expected Value

Covariance of Random Variables:

The cross covariance of two random variables $X_{i}: \Omega \rightarrow \mathbb{R}$ and $X_{j}: \Omega \rightarrow \mathbb{R}$ is given by:

$$
C_{i j} \triangleq E\left(\left(X_{i}-m_{i}\right)\left(X_{j}-m_{j}\right)\right)=E\left(X_{i} X_{j}\right)-m_{i} m_{j}
$$

where m_{i} and m_{j} are the expected values of X_{i} and X_{j}, respectively. If $i=j$, we have the autocovariance $C_{i i}$ of X_{i}.

Remark:

Two random variables X_{i} and X_{j} are said uncorrelated if $C_{i j}=0$. Note that this is equivalent to

$$
E\left(X_{i} X_{j}\right)=E\left(X_{i}\right) E\left(X_{j}\right)
$$

Expected Value

Covariance of Random Vectors:

The cross covariance of two random vectors $\mathbf{X}_{i}: \Omega \rightarrow \mathbb{R}^{n}$ and $\mathbf{X}_{j}: \Omega \rightarrow \mathbb{R}^{m}$ is given by:

$$
\mathbf{C}_{i j} \triangleq E\left(\left(\mathbf{X}_{i}-\mathbf{m}_{i}\right)\left(\mathbf{X}_{j}-\mathbf{m}_{j}\right)^{\mathrm{T}}\right)=E\left(\mathbf{X}_{i} \mathbf{X}_{j}^{\mathrm{T}}\right)-\mathbf{m}_{i} \mathbf{m}_{j}^{\mathrm{T}}
$$

where \mathbf{m}_{i} and \mathbf{m}_{j} are the expected values of \mathbf{X}_{i} and \mathbf{X}_{j}, respectively.

Remark:

Two random vectors \mathbf{X}_{i} and \mathbf{X}_{j} are said uncorrelated if $\mathbf{C}_{i j}=\mathbf{0}_{n \times m}$. Note that this is equivalent to

$$
E\left(\mathbf{X}_{i} \mathbf{X}_{j}^{\mathrm{T}}\right)=E\left(\mathbf{X}_{i}\right) E\left(\mathbf{X}_{j}\right)^{\mathrm{T}}
$$

Independence. . .

Independence

Definition:

The random variables $X_{i}: \Omega \rightarrow \mathbb{R}, i=1, \ldots, n$, are (statistically) independent if the events $\left\{\omega \in \Omega: X_{i}(\omega) \leq x_{i}\right\}, i=1, \ldots, n$, are independent. From this, one can obtain:

$$
\begin{gathered}
F_{\mathbf{X}}(\mathbf{x})=F_{X_{1}}\left(x_{1}\right) F_{X_{2}}\left(x_{2}\right) \ldots F_{X_{n}}\left(x_{n}\right) \\
f_{\mathbf{X}}(\mathbf{x})=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) \ldots f_{X_{n}}\left(x_{n}\right)
\end{gathered}
$$

Similarly, if two (or more) random vectors \mathbf{X}_{1} and \mathbf{X}_{2} are independent, then:

$$
\begin{aligned}
F_{\mathbf{x}_{1} \mathbf{x}_{2}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =F_{\mathbf{X}_{1}}\left(\mathbf{x}_{1}\right) F_{\mathbf{X}_{2}}\left(\mathbf{x}_{2}\right) \\
f_{\mathbf{X}_{1} \mathbf{x}_{2}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =f_{\mathbf{X}_{1}}\left(\mathbf{x}_{1}\right) f_{\mathbf{X}_{2}}\left(\mathbf{x}_{2}\right)
\end{aligned}
$$

Conditional Distribution...

Conditional Distribution

Conditional Probability Density Function:

Consider two random vectors $\mathbf{X}_{1}: \Omega \rightarrow \mathbb{R}^{n}$ and $\mathbf{X}_{2}: \Omega \rightarrow \mathbb{R}^{m}$ with joint pdf $f_{\mathbf{X}_{1} \mathbf{X}_{2}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$. The conditional pdf of \mathbf{X}_{1} given the event $\left\{\mathbf{X}_{2}=\mathbf{x}_{2}\right\}$ is

$$
f_{\mathbf{x}_{1} \mid \mathbf{x}_{2}}\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}\right)=\frac{f_{\mathbf{x}_{1}} \mathbf{x}_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)}{f_{\mathbf{x}_{2}}\left(\mathbf{x}_{2}\right)}
$$

for $f_{\mathbf{X}_{2}}\left(\mathbf{x}_{2}\right)>0$.

Remarks:

- A conditional probability can be computed from the conditional pdf:

$$
P\left(\left\{\mathbf{X}_{1} \in R_{1}\right\} \mid\left\{\mathbf{X}_{2}=\mathbf{x}_{2}\right\}\right)=\int_{R_{1}} f_{\mathbf{X}_{1} \mid \mathbf{x}_{2}}\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}\right) d \mathbf{x}_{1}
$$

- If \mathbf{X}_{1} and \mathbf{X}_{2} are independent, then $f_{\mathbf{X}_{1} \mid \mathbf{X}_{2}}\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}\right)=f_{\mathbf{X}_{1}}\left(\mathbf{x}_{1}\right)$.

Conditional Distribution

Conditional Expectation:

Consider two random vectors $\mathbf{X}_{1}: \Omega \rightarrow \mathbb{R}^{n}$ and $\mathbf{X}_{2}: \Omega \rightarrow \mathbb{R}^{m}$ with joint pdf $f_{\mathbf{X}_{1} \mathbf{X}_{2}}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$. Analogous to the unconditional expected value, we define the conditional expectation of $g\left(\mathbf{X}_{1}\right)$ given the event $\left\{\mathbf{X}_{2}=\mathbf{x}_{2}\right\}$ as

$$
E\left(g\left(\mathbf{X}_{1}\right) \mid\left\{\mathbf{X}_{2}=\mathbf{x}_{2}\right\}\right) \triangleq \int_{\mathbb{R}^{n}} g\left(\mathbf{x}_{1}\right) f_{\mathbf{x}_{1} \mid \mathbf{x}_{2}}\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}\right) d \mathbf{x}_{1}
$$

from which one can obtain the conditional mean $\mathbf{m}_{\mathbf{X}_{1} \mid \mathbf{X}_{2}}$ and the conditional autocovariance $\mathbf{C}_{\mathbf{x}_{1} \mathbf{x}_{1} \mid \mathbf{X}_{2}}$, by making, respectively, $g\left(\mathbf{X}_{1}\right)=\mathbf{X}_{1}$ and $g\left(\mathbf{X}_{1}\right)=$ $\left(\mathbf{X}_{1}-\mathbf{m}_{\mathbf{X}_{1} \mid \mathbf{X}_{2}}\right)\left(\mathbf{X}_{1}-\mathbf{m}_{\mathbf{X}_{1} \mid \mathbf{X}_{2}}\right)^{\mathrm{T}}$.

Remarks:

- We often abbreviate $E\left(g\left(\mathbf{X}_{1}\right) \mid\left\{\mathbf{X}_{2}=\mathbf{x}_{2}\right\}\right)$ by $E\left(g\left(\mathbf{X}_{1}\right) \mid \mathbf{X}_{2}\right)$.
- $E\left(E\left(g\left(\mathbf{X}_{1}\right) \mid \mathbf{X}_{2}\right)\right)=E\left(g\left(\mathbf{X}_{1}\right)\right)$.

Important Rules...

Important Rules

Bayes Rule:

Consider two random vectors $\mathbf{X}_{1}: \Omega \rightarrow \mathbb{R}^{n}$ and $\mathbf{X}_{2}: \Omega \rightarrow \mathbb{R}^{m}$. The Bayes Rule (or Theorem) says that:

$$
f_{\mathbf{X}_{1} \mid \mathbf{X}_{2}}\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}\right)=\frac{f_{\mathbf{X}_{2} \mid \mathbf{x}_{1}}\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}\right) f_{\mathbf{x}_{1}}\left(\mathbf{x}_{1}\right)}{f_{\mathbf{x}_{2}}\left(\mathbf{x}_{2}\right)}
$$

where the marginal pdf $f_{\mathbf{X}_{2}}\left(\mathbf{x}_{2}\right)>0$ is given by:

$$
f_{\mathbf{X}_{2}}\left(\mathbf{x}_{2}\right)=\int_{\mathbb{R}^{n}} f_{\mathbf{X}_{2} \mid \mathbf{x}_{1}}\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}\right) f_{\mathbf{x}_{1}}\left(\mathbf{x}_{1}\right) d \mathbf{x}_{1}
$$

Remark:

This result is useful for formulating Bayesian particle filters.

Important Rules

Chain Rule:

Consider the random vectors $\mathbf{X}_{i}: \Omega \rightarrow \mathbb{R}^{n_{i}}, i=1, \ldots, N$, . The chain rule says that:

$$
\begin{aligned}
f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)= & f\left(\mathbf{x}_{N} \mid \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N-1}\right) \times \\
& f\left(\mathbf{x}_{N-1} \mid \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N-2}\right) \times \ldots \\
& \ldots \times f\left(\mathbf{x}_{2} \mid \mathbf{x}_{1}\right) \times f\left(\mathbf{x}_{1}\right)
\end{aligned}
$$

Remark:

This result is also useful for formulating Bayesian particle filters!

Gaussian Vector. . .

Gaussian Vector

Definition:

A Gaussian vector is a random vector $\mathbf{X}: \Omega \rightarrow \mathbb{R}^{n}$ with joint pdf given by:

$$
f_{\mathbf{X}}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2} \operatorname{det}^{1 / 2}(\mathbf{C})} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{\mathrm{T}} \mathbf{C}^{-1}(\mathbf{x}-\mathbf{m})\right\}
$$

where

$$
\begin{gathered}
\mathbf{m}=E(\mathbf{X}) \\
\mathbf{C}=E\left((\mathbf{X}-\mathbf{m})(\mathbf{X}-\mathbf{m})^{\mathrm{T}}\right)
\end{gathered}
$$

Remark:
We denote $\mathbf{X} \sim \mathcal{N}(\mathbf{m}, \mathbf{C})$.

References...

References

目 Papoulis, A.; Pillai, S. U. Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, 2002.
Ross, S. M. A First Course in Probability. New York: Prentice Hall, 2002.

