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Definition

Definition:

We are going to deal with continuous-state discrete-time stochastic pro-
cesses (SPs). In this case, a SP is an ensemble of time sequences:

{
Xk(ω), k ∈ Z+, ω ∈ Ω

}
where Xk is a random vector (RV), i.e.,

Xk : Ω→ Rn, ∀k ∈ Z+

Remarks:

Common simplified notation: {Xk}.
Note that, by fixing k, {Xk} is a RV, while by fixing ω, {Xk} is a time
sequence.
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Definition

Examples:

1 Wiener Process:

Xk = Xk−1 + Wk−1

X1 = 0, ∀ω

Wk ∼ N (0, σ2
W ), ∀k

2 A parameterized SP:

Xk = A(ω) sin
(
2πfTk + Φ(ω)

)
A ∼ U(a1, a2)

Φ ∼ N (0, σ2
Φ)
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Characterization

Definition:

The SP {Xk} is completely characterized by its joint cdf:

FXk1
Xk2

...Xkn
(x1, x2, ..., xn)

or, equivalently, by its joint pdf:

fXk1
Xk2

...Xkn
(x1, x2, ..., xn)

for any set of instants {k1, k2, ..., kn} and ∀n <∞.

Remarks:

Second-order cdf/pdf: FXk1
Xk2

(x1, x2), fXk1
Xk2

(x1, x2).

First-order cdf/pdf: FXk
(x), fXk

(x).

7 / 27



Expectations . . .

8 / 27



Expectations

Mean (Function):

The mean (or mean function) mk ∈ Rn of a SP {Xk} is given by

mk , E (Xk) =

∫
Rn

xfXk
(x)dx

Autocorrelation Function:

The autocorrelation function Rk1,k2 ∈ Rn×n of the SP {Xk} is given by

Rk1,k2 , E
(

Xk1XT
k2

)
=

∫
Rn

∫
Rn

x1xT2 fXk1
Xk2

(x1, x2)dx1dx2
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Expectations

Autocovariance Function:

The autocovariance function Ck1,k2 ∈ Rn×n of the SP {Xk} is given by

Ck1,k2 , E
(

(Xk1 −mk1)(Xk2 −mk2)T
)

Correlation Coefficient:

The correlation coefficient ρk1,k2 ∈ R of the scalar SP {Xk} is given by

ρk1,k2 ,
Ck1,k2√

Ck1,k1Ck2,k2

Remarks:

Ck1,k2 = Rk1,k2 −mk1mT
k2

.

If Ck1,k2 = 0,∀k1 6= k2, then {Xk} is said to be uncorrelated.

ρk1,k2 ∈ [−1, 1].
10 / 27



Expectations

Cross-Correlation Function:

The cross-correlation function RXY
k1,k2
∈ Rn×n of the SPs {Xk} and {Yk} is

RXY
k1,k2

, E (Xk1YT
k2

) =

∫
Rn

∫
Rn

xyTfXk1
Yk2

(x, y)dxdy

Cross-Covariance Function:

The cross-covariance function CXY
k1,k2
∈ Rn×n of the SPs {Xk} and {Yk} is

CXY
k1,k2

, E

((
Xk1 −mX

k1

)(
Yk2 −mY

k2

)T)

...
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Expectations

Remarks:

CXY
k1,k2

= RXY
k1,k2
−mX

k1

(
mY

k2

)T
.

If CXY
k1,k2

= 0, ∀k1, k2, then the SPs {Xk} and {Yk} are said to be
(mutually) uncorrelated.

if RXY
k1,k2

= 0, ∀k1, k2, then the SPs {Xk} and {Yk} are said to be
(mutually) orthogonal.
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Gaussian Stochastic Process

Definition:

The SP {Xk} is said to be Gaussian if the random variables Xk1 , Xk2 , ...,
Xkn , ∀n <∞ and any set {k1, k2, ..., kn}, are jointly Gaussian.

Remark:

A Gaussian SP {Xk} is completely characterized by its mean mk and its
autocorrelation Rk1,k2 ,∀k1, k2 (or, equivalently, by its autocovariance).
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15 / 27



Independence

Definition:

The SP {Xk} is said to be independent if the RVs Xk1 ,Xk2 ,..., Xkn ,
∀n <∞ and any set {k1, k2, ..., kn}, are independent.

Two SP {Xk} and {Yk} are said to be (mutually) independent if
the RVs Xk1 ,Xk2 ,...,Xkn ,Ykn+1 ,Ykn+2 ,...,Yk2n , ∀n < ∞ and any set
{k1, ..., k2n}, are independent.

Remarks:

If {Xk} is independent, its joint pdf/cdf can be factored into the prod-
uct of the marginal pdf/cdf.

An independent SP is also uncorrelated. In general, the contrary is not
true.

In particular, an uncorrelated Gaussian SP is also independent.
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White Noise

Definition:

The SP {Xk} is said to be a white noise (or white sequence) if it is uncor-
related, i.e.,

Ck1,k2 = 0, ∀k1 6= k2

Remarks:

Note that, in general, a white noise is not zero-mean.

A more strong version of the above definition replaces uncorrelatedness
by independence.

Note that the autocovariance of a white noise can be written in the
form:

Ck1,k2 = Ck1,k1δk1−k2

where δk is the Kronecker delta.
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Stationarity

Strict-Sense Stationarity:

The SP {Xk} is said to be strict-sense (or strongly) stationary if its joint
cdf/pdf is invariant to a time shift, i.e.,

FXk1
Xk2

...Xkn
(x1, x2, ..., xn) = FXk1+dXk2+d ...Xkn+d

(x1, x2, ..., xn)

fXk1
Xk2

...Xkn
(x1, x2, ..., xn) = fXk1+dXk2+d ...Xkn+d

(x1, x2, ..., xn)

∀ d ∈ Z+.

Remarks:

In other words, {Xk} and {Xk+d} have the same characterization.
Second-order stationarity:

fXk1
Xk2

(x1, x2) = fXk1+dXk2+d
(x1, x2)

First-order stationarity:

fXk
(x) = fXk+d

(x)
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Stationarity

Wide-Sense Stationary:

The SP {Xk} is said to be wide-sense stationary if:

E (Xk) = m (constant)

E
(

Xk1XT
k2

)
= Rτ , τ , k1 − k2

Remarks:

Consider a scalar wide-sense stationary SP {Xk}.

Average power: E
(
X 2
k

)
= R0.

Autocovariance: Cτ = Rτ −m2.

Correlation coefficient: ρτ = Cτ/C0.
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Central Limit Theorem

Theorem (there exist other versions):

Consider n independent RVs X1,X2,...,Xn. Denote mi = E (Xi ) and σ2
i =

E ((Xi −mi )
2), ∀i . Now consider their sum:

X = X1 + X2 + ...+ Xn

The mean and variance of X are, respectively,

m = m1 + m2 + ...+ mn

σ2 = σ2
1 + σ2

2 + ...+ σ2
n

The Central Limit Theorem says that, under certain conditions,

fX (x)→ N
(
m, σ2

)
as n→∞.
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Law of Large Numbers. . .
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Law of Large Numbers

Theorem (there exist other versions):

Consider a wide-sense-stationary and uncorrelated SP {Xk}, with mean and
autocovariance given by:

E (Xk) = m

E
((

Xk1 −m
) (

Xk2 −m
))

= σ2δk1−k2

Consider the sample mean:

X̄n ,
1

n

n∑
k=1

Xk

The Law of Large Numbers says that

X̄n → m as n→∞ (m.s.)
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