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Introduction

Motivation:

In general, we are interested in two applications of parameter estimation
techniques:

System Identification – estimation of model parameters.

Sensor Calibration – estimation of sensor parameters.
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Introduction

Approaches:

There are two approaches to parameter estimation:

Classical Approach: The parameter to be estimated is modeled as an
unknown deterministic constant.

Bayesian Approach: The parameter to be estimated is modeled as a
realization of a random variable. In this case, one is supposed to have
a priori probabilistic information about the parameter.
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Introduction

General Problem:

Consider a set of measures y1:N , with yi modeled by

yi = hi (θ, vi ) , i = 1, 2, ...,N (1)

where hi : Rp × Rn → Rm is a known function and vi ∈ Rn is an error
vector. The vector θ ∈ Rp contains the unknown parameters that we want
to estimate.

In general, the estimator θ̂ ∈ Rp of θ from y1:N has the form

θ̂ = g (y1:N) (2)

where g is a function obtained according to an optimality criterion.
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Introduction

Criteria:

The usual criteria for parameter estimation are the following:

Least Squares (Classical Approach)

Maximum Likelihood (Classical Approach)

Maximum a Posteriori Probability (Bayesian Approach)

Minimum Mean Square Error (Bayesian Approach)
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Least Squares

Problem Definition:

Consider a set of measures y1:N , with yi ∈ Rm modeled by

yi = hi (θ) + vi , i = 1, 2, ...,N (3)

where hi : Rp → Rm is a known function and vi ∈ Rm is an additive error;
θ ∈ Rp is the parameter vector.

Consider that θ is an unknown constant → Classical Approach
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Least Squares

The least-squares estimator (LS) θ̂N ∈ Rp of θ from y1:N is given by

θ̂N = arg min
θ

JN(θ) (4)

where

JN(θ) ,
N∑
i=1

(
yi − hi (θ)

)T
Wi

(
yi − hi (θ)

)
(5)

and Wi ∈ Rm×m is a weighting matrix.
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Least Squares

Explicit Solution for the Linear Model:

Consider that (3) is a linear model in the form

yi = Hiθ + vi , i = 1, 2, ...,N (6)

In this case, the LS estimator defined in (4) is given explicitly by

θ̂N =

 N∑
i=1

HT
i WiHi

−1
N∑
i=1

HT
i Wiyi (7)

Remark: Note that we have not established any particular property for the
measurement error vi , i = 1, ...,N.
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Maximum Likelihood

Problem Definition:

Consider a set of measures y1:N , with yi ∈ Rm modeled by

yi = hi (θ) + vi , i = 1, 2, ...,N (8)

where hi : Rp → Rm is a known function and vi ∈ Rm is an additive error;
θ ∈ Rp is the parameter vector.

Consider that θ is an unknown constant → Classical Approach
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Maximum Likelihood

The maximum likelihood (ML) estimator θ̂N ∈ Rp of θ from y1:N is

θ̂N = arg max
θ

ΛN(θ) (9)

where ΛN(θ) ∈ R is the likelihood function, which is defined as the joint
pdf of Y1:N given the parameter θ, i.e.,

ΛN(θ) , fY1:N
(y1:N ;θ) (10)
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Maximum Likelihood

Explicit Solution for the Linear Gaussian Model:

Consider that (8) is a linear Gaussian model in the form

yi = Hiθ + vi , i = 1, 2, ...,N (11)

where v1:N is a realization of an uncorrelated random sequence V1:N , with
marginal distribution Vi ∼ N (0,Ri ), and Hi ∈ Rm×p is a known matrix.

In this case, the ML estimator defined in (9) is given explicitly by

θ̂N =

 N∑
i=1

HT
i R−1

i Hi

−1
N∑
i=1

HT
i R−1

i yi (12)

Remark: Note that by choosing Wi = R−1
i , the LS estimator given in (7)

coincides with the ML estimator given in (12).
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Maximum Likelihood

Properties:

Consider the estimation error RV Θ̃N , Θ̂N − θ. The ML estimator given
in (12) has the following properties:

1 Bias:

E
(
Θ̃N

)
= 0

In this case, we say that estimator (12) is unbiased.

2 Covariance:

E
(
Θ̃NΘ̃

T
N

)
=

 N∑
i=1

HT
i R−1

i Hi

−1

Note that by making N →∞, the above expression goes to zero, i.e.,
Θ̂N → θ in the mean square (ms) sense. In this case, we say that the
ML estimator is consistent.
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Maximum a Posteriori Probability

Problem Definition:

Consider a set of measures y1:N , with yi ∈ Rm modeled by

yi = hi (θ) + vi , i = 1, 2, ...,N (13)

where hi : Rp → Rm is a known function and vi ∈ Rm is an additive error
modeled as a realization of a random vector Vi ; θ ∈ Rp is the parameter
vector.

Consider that θ is a realization of a RV Θ with known pdf fΘ(θ) →
Bayesian Approach
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Maximum a Posteriori Probability

The Maximum a Posteriori Probability (MAP) estimator θ̂N ∈ Rp of θ from
y1:N is given by

θ̂N = arg max
θ

fΘ|Y1:N
(θ|y1:N) (14)

where fΘ|Y1:N
(θ|y1:N) is the a posteriori pdf given by the Bayes Theorem:

fΘ|Y1:N
(θ|y1:N) =

fY1:N |Θ(y1:N |θ)fΘ(θ)

fY1:N
(y1:N)

(15)

where fY1:N |Θ(y1:N |θ) is the likelihood function of Y1:N given {Θ = θ},
fΘ(θ) is the a priori pdf of Θ, and fY1:N

(y1:N) is a normalizing factor.
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Maximum a Posteriori Probability

Explicit Solution for the Linear Gaussian Model:

Consider that (13) is a linear Gaussian model in the form

yi = Hiθ + vi , i = 1, 2, ...,N (16)

where θ is the realization of a RV Θ ∼ N (mΘ,PΘ), v1:N is the realization
of an uncorrelated random sequence V1:N with marginal distribution Vi ∼
N (0,Ri ), and Hi ∈ Rm×p is a known matrix.

In this case, the MAP estimator (14) is given explicitly by

θ̂N = PNP−1
Θ mΘ + PN

N∑
i=1

HT
i R−1

i yi (17)

with

PN ,

 N∑
i=1

HT
i R−1

i Hi + P−1
Θ

−1

∈ Rp×p (18)
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Maximum a Posteriori Probability

Properties:

Consider the estimation error RV Θ̃N , Θ̂N − Θ. The MAP estimator
given in (17) has the following properties:

1 Bias:
E
(
Θ̃N

)
= 0

In this case, estimator (17) is said to be unbiased.

2 Covariance: Define Θ̌N , Θ̂N − E (Θ̂N). The covariance of Θ̂N is

E
(
Θ̌NΘ̌

T
N

)
= PN

N∑
i=1

HT
i R−1

i PYi
R−1
i HiPN

where PYi
= HiPΘHT

i + Ri .
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Maximum a Posteriori Probability

3 Mean Square Error (MSE):

E
(
Θ̃NΘ̃

T
N

)
= PNP−1

Θ mΘmT
ΘP−1

Θ PN + P1

(
PΘ + mΘmT

Θ

)
P1 +

PNP−1
Θ mΘmT

ΘP1 + P1mΘmT
ΘP−1

Θ PN +

PN

N∑
i=1

HT
i R−1

i HiPN

where

P1 ,

PN

N∑
i=1

HT
i R−1

i Hi − Ip


Note that estimator (17) is consistent, since the MSE converges to 0
as N →∞, which is equivalent to say that Θ̂N → Θ (ms).
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Minimum Mean Square Error

Problem Definition:

Consider a set of measures y1:N , with yi ∈ Rm modeled by

yi = hi (θ) + vi , i = 1, 2, ...,N (19)

where hi : Rp → Rm is a known function, and vi ∈ Rm is an additive error
modeled as a realization of a RV; θ ∈ Rp is the parameter vector.

Consider that θ is a realization of a RV Θ with known pdf fΘ(θ) →
Bayesian Approach
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Minimum Mean Square Error

The Minimum Mean Square Error estimator (MMSE) θ̂N ∈ Rp of θ from
y1:N is given by

θ̂N = arg min
θ̄

E

((
θ̄ −Θ

)T (
θ̄ −Θ

)
|Y1:N

)
(20)
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Minimum Mean Square Error

General Solution:

We can show that, for any measurement model (19), the general solution
to problem (20) is given by the conditional mean:

θ̂N = E
(
Θ|Y1:N

)
(21)

which is calculated by means of an a posteriori pdf given by the Bayes
Theorem:

fΘ|Y1:N
(θ|y1:N) =

fY1:N |Θ(y1:N |θ)fΘ(θ)

fY1:N
(y1:N)

(22)

where fY1:N |Θ(y1:N |θ) is the likelihood function of Y1:N given {Θ = θ},
fΘ(θ) is the a priori pdf of Θ, and fY1:N

(y1:N) is a normalizing factor.
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Minimum Mean Square Error

Explicit Solution for the Linear Gaussian Model:

Consider that (19) is a linear Gaussian model in the form

yi = Hiθ + vi , i = 1, 2, ...,N (23)

where θ is a realization of a RV Θ ∼ N (mΘ,PΘ), v1:N is a realization
of an uncorrelated random sequence V1:N , with marginal distribution Vi ∼
N (0,Ri ), and Hi ∈ Rm×p is a known matrix.

In this case, the MMSE estimator (21) is given explicitly by

θ̂N = PNP−1
Θ mΘ + PN

N∑
i=1

HT
i R−1

i yi (24)

where PN is the matrix defined in (18).
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Minimum Mean Square Error

Properties:

The MMSE estimator (24) is identical to the MAP estimator (17). This is
due to the Gaussianity of Θ conditioned on Y1:N , i.e.,

fΘ|Y1:N

(
θ|y1:N

)
= N

(
mΘ|Y ,PΘ|Y

)
(25)

with

mΘ|Y = θ̂N (26)

PΘ|Y = PN (27)

Therefore, these estiamators have the same properties.
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Cramér-Rao Lower Bound

For Deterministic Parameters:

In this case, the Cramér-Rao Lower Bound (CRLB) says that the covariance
(or MSE) of an unbiased estimator is lower limited according to:

E

((
Θ̂N − θ

)(
Θ̂N − θ

)T)
≥ J−1 (28)

where J is the Fisher information matrix, which is defined as

J , −E
(
∇θ∇T

θ ln ΛN(θ)
)

(29)

= E
((
∇θ ln ΛN(θ)

) (
∇θ ln ΛN(θ)

)T)
(30)

where ΛN(θ) is the likelihood function (defined in slide 11).
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Cramér-Rao Lower Bound

For Random Parameters:

In this case, the CRLB has the same form of (28)–(30), however:

instead of the deterministic vector θ, it considers the RV Θ and

the likelihood function is the following conditional pdf:

ΛN(Θ) = fY1:N |Θ(Y1:N |Θ)

Remark:

Note that in the deterministic case, the expectations in (29)–(30) are taken
along Y1:N . In the random case, these expectations are taken along Y1:N

and Θ.
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Cramér-Rao Lower Bound

Linear Gaussian Model with Deterministic Parameters:

Consider the linear Gaussian model

yi = Hiθ + vi ∈ Rm, i = 1, 2, ...,N (31)

where θ is an unknown deterministic vector, v1:N is a realization of an uncor-
related random sequence V1:N , with marginal distribution Vi ∼ N (0,Ri ),
and Hi ∈ Rm×p is a known matrix.

In this case, the Fisher information matrix is given by

J =
N∑
i=1

HT
i R−1

i Hi (32)

Note that J is equal to the inverse of the covariance of the ML estimator.
Because the covariance of the ML estimator reaches its lower bound, we say
that it is efficient.
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