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Introduction

Motivation:

In general, we are interested in two applications of parameter estimation
techniques:

@ System ldentification — estimation of model parameters.

@ Sensor Calibration — estimation of sensor parameters.
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Introduction

Approaches:

There are two approaches to parameter estimation:

@ Classical Approach: The parameter to be estimated is modeled as an
unknown deterministic constant.

o Bayesian Approach: The parameter to be estimated is modeled as a

realization of a random variable. In this case, one is supposed to have
a priori probabilistic information about the parameter.
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Introduction

General Problem:

Consider a set of measures y;.p, with y; modeled by

Y = h,' (0,v,-), i = 1,2, ceey N (1)

where h; : RP x R" — R™ is a known function and v; € R" is an error
vector. The vector 8 € RP contains the unknown parameters that we want
to estimate.

In general, the estimator 6 € RP of 0 from y1.n has the form

A

0= g(yl:N) (2)

where g is a function obtained according to an optimality criterion.
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Introduction

Criteria:

The usual criteria for parameter estimation are the following:
@ Least Squares (Classical Approach)
e Maximum Likelihood (Classical Approach)
e Maximum a Posteriori Probability (Bayesian Approach)

@ Minimum Mean Square Error (Bayesian Approach)
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Least Squares

Problem Definition:

Consider a set of measures y;.y, with y; € R™ modeled by

y,-=h,-(0)+v,-, i=12,...,N (3)
where h; : RP — R™ is a known function and v; € R is an additive error;

0 € RP is the parameter vector.

Consider that 0 is an unknown constant — Classical Approach

9/34



Least Squares

The least-squares estimator (LS) Oy € RP of 0 from y1.n is given by
Oy = arg mein In(0) (4)
where
()23 (v — i ()" Wi (y; — hi (6)) (5)

and W; € R™*™ is a weighting matrix.
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Least Squares

Explicit Solution for the Linear Model:

Consider that (3) is a linear model in the form

y; = H,'O—I-V,', i=12,...,N (6)

In this case, the LS estimator defined in (4) is given explicitly by
N 1o
On =D _HWH; | > H wy, (7)
i=1 i=1

Remark: Note that we have not established any particular property for the
measurement error v;, i = 1,..., N.
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Maximum Likelihood

Problem Definition:

Consider a set of measures y;.p, with y; € R™ modeled by

y,-=h,-(0)+v,-, i=1,2,...,N (8)
where h; : RP — R™ is a known function and v; € R is an additive error;

0 € R” is the parameter vector.

Consider that 0 is an unknown constant — Classical Approach
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Maximum Likelihood

The maximum likelihood (ML) estimator @y € RP of @ from yy.p is

Oy = arg max An(0) (9)

where Ay(0) € R is the likelihood function, which is defined as the joint
pdf of Yi.5 given the parameter 0, i.e.,

An(8) = fryy (Y1n: 0) (10)
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Maximum Likelihood

Explicit Solution for the Linear Gaussian Model:

Consider that (8) is a linear Gaussian model in the form
yi=H0+v;, i=12 .. N (11)

where v1.p is a realization of an uncorrelated random sequence V1.p, with
marginal distribution V; ~ N(0,R;), and H; € R™*" is a known matrix.

In this case, the ML estimator defined in (9) is given explicitly by

-1
N N

Ov =D _HIR™H; | > HIRy, (12)
i=1 i=1

Remark: Note that by choosing W; = Ri_l, the LS estimator given in (7)
coincides with the ML estimator given in (12).
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Maximum Likelihood

Properties:

Consider the estimation error RV C:)N = @N — 0. The ML estimator given
in (12) has the following properties:

1 Bias:

E(6n) =0
In this case, we say that estimator (12) is unbiased.

2 Covariance: .

E ((:)N(:)E,) - zN:H,TRilH,-
i=1

Note that by making N — oo, the above expression goes to zero, i.e.,
®p — 6 in the mean square (ms) sense. In this case, we say that the
ML estimator is consistent.
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Maximum a Posteriori Probability

Problem Definition:

Consider a set of measures y;.p, with y; € R™ modeled by

Yi = h; (0) +vi, i=12,., N (13)

where h; : R? — R™ is a known function and v; € R™ is an additive error

modeled as a realization of a random vector V;; @ € RP is the parameter
vector.

Consider that @ is a realization of a RV ® with known pdf fg(6) —
Bayesian Approach
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Maximum a Posteriori Probability

The Maximum a Posteriori Probability (MAP) estimator Oy € RP of 6 from
y1.n IS given by

Oy = arg max folv.n(01y1:n) (14)

where fo|y, , (0]y1.n) is the a posteriori pdf given by the Bayes Theorem:

fovie(Y1:n10)fe(0)
le:N(yliN)

foiv,y (Oly1:n) = (15)

where fy, \1@(y1:n]0) is the likelihood function of Y1,y given {® = 6},
fo(0) is the a priori pdf of ®, and fy,., (y1.y) is @ normalizing factor.
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Maximum a Posteriori Probability

Explicit Solution for the Linear Gaussian Model:
Consider that (13) is a linear Gaussian model in the form
yi=H@+v;, i=12 .. N (16)

where 0 is the realization of a RV © ~ N (mg, Pg), vi.y is the realization
of an uncorrelated random sequence V1. with marginal distribution V; ~
N(0,R;), and H; € R™*P is a known matrix.

In this case, the MAP estimator (14) is given explicitly by

N
Oy =PnPg'me + Py > HIR/y; (17)
i=1
with
N -1
Pv2 | Y HIRH; +Pgl | eRP*P (18)
i=1
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Maximum a Posteriori Probability

Properties:

Consider the estimation error RV @y £ Oy — ©. The MAP estimator
given in (17) has the following properties:

1 Bias:
E(6n) =0
In this case, estimator (17) is said to be unbiased.

2 Covariance: Define Oy £ @y — E(Oy). The covariance of Oy is
N
E (&nOF) = Pn Y HIR Py R THPY
i=1
where Py, = H;PgHT + R;.

21/34



Maximum a Posteriori Probability

3 Mean Square Error (MSE):

E (c:),\,c:)f,) — PyPg'mem&PSlPy + Py <P@ 4 memg> P, +
PNPélm@mgpl + le@mgpélp,\/ +
N
Py HIR;'H;Py
=1

where

N
P12 [Py HIR'H;i -1,
i=1

Note that estimator (17) is consistent, since the MSE converges to 0
as N — oo, which is equivalent to say that @y — © (ms).
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Minimum Mean Square Error

Problem Definition:

Consider a set of measures y;.p, with y; € R™ modeled by

yi=h;(0)+vi, i=12..N (19)

where h; : RP — R™ is a known function, and v; € R is an additive error
modeled as a realization of a RV; 8 € R” is the parameter vector.

Consider that @ is a realization of a RV ® with known pdf fg(6) —
Bayesian Approach
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Minimum Mean Square Error

The Minimum Mean Square Error estimator (MMSE) @y € RP of 6 from
Y1.n is given by

Oy = arg méin E ((é — @))T (0_ - @)) |Y1:N) (20)

25/34



Minimum Mean Square Error

General Solution:

We can show that, for any measurement model (19), the general solution
to problem (20) is given by the conditional mean:

Oy = E (©|Y1n) (21)

which is calculated by means of an a posteriori pdf given by the Bayes
Theorem:

fovie(Y1:n10)fe(0)
le;N(Yl:N)

forv.y (0y1n) = (22)

where fy, \1@(y1:n]0) is the likelihood function of Y1,y given {® = 6},
fo(0) is the a priori pdf of ®, and fy,,,(y1.y) is a normalizing factor.
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Minimum Mean Square Error

Explicit Solution for the Linear Gaussian Model:

Consider that (19) is a linear Gaussian model in the form
yi=H0+v;, i=12_.. N (23)

where 0 is a realization of a RV ©® ~ AN (mg,Pg), vi.n is a realization
of an uncorrelated random sequence V1.p, with marginal distribution V; ~
N(0,R;), and H; € R™*P is a known matrix.

In this case, the MMSE estimator (21) is given explicitly by
N
On = PyPg'mo + Py > HIR My, (24)
i=1

where Py is the matrix defined in (18).
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Minimum Mean Square Error

Properties:

The MMSE estimator (24) is identical to the MAP estimator (17). This is
due to the Gaussianity of ® conditioned on Yy.p, i.e.,

foryey (Oly1n) =N (mew, Pe|y) (25)

with
mejy = On (26)
Pojy = Pn (27)

Therefore, these estiamators have the same properties.
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Cramér-Rao Lower Bound

For Deterministic Parameters:

In this case, the Cramér-Rao Lower Bound (CRLB) says that the covariance
(or MSE) of an unbiased estimator is lower limited according to:

N A T
E((@N—e) (@N—e) ) > )L (28)
where J is the Fisher information matrix, which is defined as
b2 _E (vgvg |n/\N(e)) (29)
- E ((vg InAn(8)) (Vo |nAN(0))T) (30)

where Ap(0) is the likelihood function (defined in slide 11).
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Cramér-Rao Lower Bound

For Random Parameters:
In this case, the CRLB has the same form of (28)—(30), however:
@ instead of the deterministic vector @, it considers the RV ® and

@ the likelihood function is the following conditional pdf:
An(©) = fy,y0(Y1:n[©)

Remark:

Note that in the deterministic case, the expectations in (29)—(30) are taken
along Yi.n. In the random case, these expectations are taken along Yi.p
and ©.
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Cramér-Rao Lower Bound

Linear Gaussian Model with Deterministic Parameters:

Consider the linear Gaussian model
yi=HO0+v, eR" i=12..N (31)

where @ is an unknown deterministic vector, vi.p is a realization of an uncor-
related random sequence Vi.y, with marginal distribution V; ~ N (0, RR;),
and H; € R™*P is a known matrix.

In this case, the Fisher information matrix is given by

N
J=> HR'H (32)
i=1

Note that J is equal to the inverse of the covariance of the ML estimator.
Because the covariance of the ML estimator reaches its lower bound, we say

that it is efficient.
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