Optimal Filtering with Aerospace Applications

Chapter 3: Parameter Estimation

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

$$
\begin{gathered}
\text { São José dos Campos - SP } \\
2023
\end{gathered}
$$

Contents

(1) Introduction
(2) Least Squares
(3) Maximum Likelihood
(4) Maximum a Posteriori Probability
(5) Minimum Mean Square Error
(6) Cramér-Rao Lower Bound

Introduction. . .

Introduction

Motivation:

In general, we are interested in two applications of parameter estimation techniques:

- System Identification - estimation of model parameters.
- Sensor Calibration - estimation of sensor parameters.

Introduction

Approaches:

There are two approaches to parameter estimation:

- Classical Approach: The parameter to be estimated is modeled as an unknown deterministic constant.
- Bayesian Approach: The parameter to be estimated is modeled as a realization of a random variable. In this case, one is supposed to have a priori probabilistic information about the parameter.

Introduction

General Problem:

Consider a set of measures $\mathbf{y}_{1: N}$, with \mathbf{y}_{i} modeled by

$$
\begin{equation*}
\mathbf{y}_{i}=\mathbf{h}_{i}\left(\boldsymbol{\theta}, \mathbf{v}_{i}\right), \quad i=1,2, \ldots, N \tag{1}
\end{equation*}
$$

where $\mathbf{h}_{i}: \mathbb{R}^{p} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a known function and $\mathbf{v}_{i} \in \mathbb{R}^{n}$ is an error vector. The vector $\boldsymbol{\theta} \in \mathbb{R}^{p}$ contains the unknown parameters that we want to estimate.

In general, the estimator $\hat{\boldsymbol{\theta}} \in \mathbb{R}^{p}$ of $\boldsymbol{\theta}$ from $\mathbf{y}_{1: N}$ has the form

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}=\mathbf{g}\left(\mathbf{y}_{1: N}\right) \tag{2}
\end{equation*}
$$

where \mathbf{g} is a function obtained according to an optimality criterion.

Introduction

Criteria:

The usual criteria for parameter estimation are the following:

- Least Squares (Classical Approach)
- Maximum Likelihood (Classical Approach)
- Maximum a Posteriori Probability (Bayesian Approach)
- Minimum Mean Square Error (Bayesian Approach)

Least Squares. . .

Least Squares

Problem Definition:

Consider a set of measures $\mathbf{y}_{1: N}$, with $\mathbf{y}_{i} \in \mathbb{R}^{m}$ modeled by

$$
\begin{equation*}
\mathbf{y}_{i}=\mathbf{h}_{i}(\boldsymbol{\theta})+\mathbf{v}_{i}, \quad i=1,2, \ldots, N \tag{3}
\end{equation*}
$$

where $\mathbf{h}_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ is a known function and $\mathbf{v}_{i} \in \mathbb{R}^{m}$ is an additive error; $\boldsymbol{\theta} \in \mathbb{R}^{p}$ is the parameter vector.

Consider that $\boldsymbol{\theta}$ is an unknown constant \rightarrow Classical Approach

Least Squares

The least-squares estimator (LS) $\hat{\boldsymbol{\theta}}_{N} \in \mathbb{R}^{p}$ of $\boldsymbol{\theta}$ from $\mathbf{y}_{1: N}$ is given by

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{N}=\arg \min _{\boldsymbol{\theta}} J_{N}(\boldsymbol{\theta}) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{N}(\boldsymbol{\theta}) \triangleq \sum_{i=1}^{N}\left(\mathbf{y}_{i}-\mathbf{h}_{i}(\boldsymbol{\theta})\right)^{\mathrm{T}} \mathbf{W}_{i}\left(\mathbf{y}_{i}-\mathbf{h}_{i}(\boldsymbol{\theta})\right) \tag{5}
\end{equation*}
$$

and $\mathbf{W}_{i} \in \mathbb{R}^{m \times m}$ is a weighting matrix.

Least Squares

Explicit Solution for the Linear Model:

Consider that (3) is a linear model in the form

$$
\begin{equation*}
\mathbf{y}_{i}=\mathbf{H}_{i} \boldsymbol{\theta}+\mathbf{v}_{i}, \quad i=1,2, \ldots, N \tag{6}
\end{equation*}
$$

In this case, the LS estimator defined in (4) is given explicitly by

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{N}=\left(\sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{W}_{i} \mathbf{H}_{i}\right)^{-1} \sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{W}_{i} \mathbf{y}_{i} \tag{7}
\end{equation*}
$$

Remark: Note that we have not established any particular property for the measurement error $\mathbf{v}_{i}, i=1, \ldots, N$.

Maximum Likelihood. . .

Maximum Likelihood

Problem Definition:

Consider a set of measures $\mathbf{y}_{1: N}$, with $\mathbf{y}_{i} \in \mathbb{R}^{m}$ modeled by

$$
\begin{equation*}
\mathbf{y}_{i}=\mathbf{h}_{i}(\boldsymbol{\theta})+\mathbf{v}_{i}, \quad i=1,2, \ldots, N \tag{8}
\end{equation*}
$$

where $\mathbf{h}_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ is a known function and $\mathbf{v}_{i} \in \mathbb{R}^{m}$ is an additive error; $\boldsymbol{\theta} \in \mathbb{R}^{p}$ is the parameter vector.

Consider that $\boldsymbol{\theta}$ is an unknown constant \rightarrow Classical Approach

Maximum Likelihood

The maximum likelihood (ML) estimator $\hat{\boldsymbol{\theta}}_{N} \in \mathbb{R}^{p}$ of $\boldsymbol{\theta}$ from $\mathbf{y}_{1: N}$ is

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{N}=\arg \max _{\boldsymbol{\theta}} \Lambda_{N}(\boldsymbol{\theta}) \tag{9}
\end{equation*}
$$

where $\Lambda_{N}(\boldsymbol{\theta}) \in \mathbb{R}$ is the likelihood function, which is defined as the joint pdf of $\mathbf{Y}_{1: N}$ given the parameter $\boldsymbol{\theta}$, i.e.,

$$
\begin{equation*}
\Lambda_{N}(\boldsymbol{\theta}) \triangleq f_{\mathbf{Y}_{1: N}}\left(\mathbf{y}_{1: N} ; \boldsymbol{\theta}\right) \tag{10}
\end{equation*}
$$

Maximum Likelihood

Explicit Solution for the Linear Gaussian Model:

Consider that (8) is a linear Gaussian model in the form

$$
\begin{equation*}
\mathbf{y}_{i}=\mathbf{H}_{i} \boldsymbol{\theta}+\mathbf{v}_{i}, \quad i=1,2, \ldots, N \tag{11}
\end{equation*}
$$

where $\mathbf{v}_{1: N}$ is a realization of an uncorrelated random sequence $\mathbf{V}_{1: N}$, with marginal distribution $\mathbf{V}_{i} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{i}\right)$, and $\mathbf{H}_{i} \in \mathbb{R}^{m \times p}$ is a known matrix.

In this case, the ML estimator defined in (9) is given explicitly by

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{N}=\left(\sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{R}_{i}^{-1} \mathbf{H}_{i}\right)^{-1} \sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{R}_{i}^{-1} \mathbf{y}_{i} \tag{12}
\end{equation*}
$$

Remark: Note that by choosing $\mathbf{W}_{i}=\mathbf{R}_{i}^{-1}$, the LS estimator given in (7) coincides with the ML estimator given in (12).

Maximum Likelihood

Properties:

Consider the estimation error $\mathrm{RV} \tilde{\boldsymbol{\Theta}}_{N} \triangleq \hat{\boldsymbol{\Theta}}_{N}-\boldsymbol{\theta}$. The ML estimator given in (12) has the following properties:

1 Bias:

$$
E\left(\tilde{\boldsymbol{\Theta}}_{N}\right)=\mathbf{0}
$$

In this case, we say that estimator (12) is unbiased.
2 Covariance:

$$
E\left(\tilde{\boldsymbol{\Theta}}_{N} \tilde{\boldsymbol{\Theta}}_{N}^{\mathrm{T}}\right)=\left(\sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{R}_{i}^{-1} \mathbf{H}_{i}\right)^{-1}
$$

Note that by making $N \rightarrow \infty$, the above expression goes to zero, i.e., $\hat{\boldsymbol{\Theta}}_{N} \rightarrow \boldsymbol{\theta}$ in the mean square (ms) sense. In this case, we say that the ML estimator is consistent.

Maximum a Posteriori Probability...

Maximum a Posteriori Probability

Problem Definition:

Consider a set of measures $\mathbf{y}_{1: N}$, with $\mathbf{y}_{i} \in \mathbb{R}^{m}$ modeled by

$$
\begin{equation*}
\mathbf{y}_{i}=\mathbf{h}_{i}(\boldsymbol{\theta})+\mathbf{v}_{i}, \quad i=1,2, \ldots, N \tag{13}
\end{equation*}
$$

where $\mathbf{h}_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ is a known function and $\mathbf{v}_{i} \in \mathbb{R}^{m}$ is an additive error modeled as a realization of a random vector $\mathbf{V}_{i} ; \boldsymbol{\theta} \in \mathbb{R}^{p}$ is the parameter vector.

Consider that $\boldsymbol{\theta}$ is a realization of a $\mathrm{RV} \boldsymbol{\Theta}$ with known pdf $f_{\boldsymbol{\Theta}}(\boldsymbol{\theta}) \rightarrow$
Bayesian Approach

Maximum a Posteriori Probability

The Maximum a Posteriori Probability (MAP) estimator $\hat{\boldsymbol{\theta}}_{N} \in \mathbb{R}^{p}$ of $\boldsymbol{\theta}$ from $\mathbf{y}_{1: N}$ is given by

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{N}=\arg \max _{\boldsymbol{\theta}} f_{\boldsymbol{\Theta} \mid \mathbf{Y}_{1: N}}\left(\boldsymbol{\theta} \mid \mathbf{y}_{1: N}\right) \tag{14}
\end{equation*}
$$

where $f_{\Theta \mid \mathbf{Y}_{1: N}}\left(\boldsymbol{\theta} \mid \mathbf{y}_{1: N}\right)$ is the a posteriori pdf given by the Bayes Theorem:

$$
\begin{equation*}
f_{\boldsymbol{\Theta} \mid \mathbf{Y}_{1: N}}\left(\boldsymbol{\theta} \mid \mathbf{y}_{1: N}\right)=\frac{f_{\mathbf{Y}_{1: N} \mid \boldsymbol{\Theta}}\left(\mathbf{y}_{1: N} \mid \boldsymbol{\theta}\right) f_{\boldsymbol{\Theta}}(\boldsymbol{\theta})}{f_{\mathbf{Y}_{1: N}}\left(\mathbf{y}_{1: N}\right)} \tag{15}
\end{equation*}
$$

where $f_{\mathbf{Y}_{1: N} \mid \boldsymbol{\Theta}}\left(\mathbf{y}_{1: N} \mid \boldsymbol{\theta}\right)$ is the likelihood function of $\mathbf{Y}_{1: N}$ given $\{\boldsymbol{\Theta}=\boldsymbol{\theta}\}$, $f_{\boldsymbol{\Theta}}(\boldsymbol{\theta})$ is the a priori pdf of $\boldsymbol{\Theta}$, and $f_{\mathbf{Y}_{1: N}}\left(\mathbf{y}_{1: N}\right)$ is a normalizing factor.

Maximum a Posteriori Probability

Explicit Solution for the Linear Gaussian Model:

Consider that (13) is a linear Gaussian model in the form

$$
\begin{equation*}
\mathbf{y}_{i}=\mathbf{H}_{i} \boldsymbol{\theta}+\mathbf{v}_{i}, \quad i=1,2, \ldots, N \tag{16}
\end{equation*}
$$

where $\boldsymbol{\theta}$ is the realization of a $\mathrm{RV} \boldsymbol{\Theta} \sim \mathcal{N}\left(\mathbf{m}_{\Theta}, \mathbf{P}_{\Theta}\right), \mathbf{v}_{1: N}$ is the realization of an uncorrelated random sequence $\mathbf{V}_{1: N}$ with marginal distribution $\mathbf{V}_{i} \sim$ $\mathcal{N}\left(\mathbf{0}, \mathbf{R}_{i}\right)$, and $\mathbf{H}_{i} \in \mathbb{R}^{m \times p}$ is a known matrix.

In this case, the MAP estimator (14) is given explicitly by

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{N}=\mathbf{P}_{N} \mathbf{P}_{\Theta}^{-1} \mathbf{m}_{\Theta}+\mathbf{P}_{N} \sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{R}_{i}^{-1} \mathbf{y}_{i} \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathbf{P}_{N} \triangleq\left(\sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{R}_{i}^{-1} \mathbf{H}_{i}+\mathbf{P}_{\ominus}^{-1}\right)^{-1} \in \mathbb{R}^{p \times p} \tag{18}
\end{equation*}
$$

Maximum a Posteriori Probability

Properties:

Consider the estimation error $\mathrm{RV} \tilde{\boldsymbol{\Theta}}_{N} \triangleq \hat{\boldsymbol{\Theta}}_{N}-\boldsymbol{\Theta}$. The MAP estimator given in (17) has the following properties:

1 Bias:

$$
E\left(\tilde{\boldsymbol{\Theta}}_{N}\right)=\mathbf{0}
$$

In this case, estimator (17) is said to be unbiased.
2 Covariance: Define $\check{\boldsymbol{\Theta}}_{N} \triangleq \hat{\boldsymbol{\Theta}}_{N}-E\left(\hat{\boldsymbol{\Theta}}_{N}\right)$. The covariance of $\hat{\boldsymbol{\Theta}}_{N}$ is

$$
E\left(\check{\boldsymbol{\Theta}}_{N} \check{\boldsymbol{\Theta}}_{N}^{\mathrm{T}}\right)=\mathbf{P}_{N} \sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{R}_{i}^{-1} \mathbf{P}_{Y_{i}} \mathbf{R}_{i}^{-1} \mathbf{H}_{i} \mathbf{P}_{N}
$$

where $\mathbf{P}_{Y_{i}}=\mathbf{H}_{i} \mathbf{P}_{\ominus} \mathbf{H}_{i}^{\mathrm{T}}+\mathbf{R}_{\boldsymbol{i}}$.

Maximum a Posteriori Probability

3 Mean Square Error (MSE):

$$
\begin{aligned}
E\left(\tilde{\boldsymbol{\Theta}}_{N} \tilde{\boldsymbol{\Theta}}_{N}^{\mathrm{T}}\right)= & \mathbf{P}_{N} \mathbf{P}_{\Theta}^{-1} \mathbf{m}_{\Theta} \mathbf{m}_{\Theta}^{\mathrm{T}} \mathbf{P}_{\Theta}^{-1} \mathbf{P}_{N}+\mathbf{P}_{1}\left(\mathbf{P}_{\Theta}+\mathbf{m}_{\Theta} \mathbf{m}_{\Theta}^{\mathrm{T}}\right) \mathbf{P}_{1}+ \\
& \mathbf{P}_{N} \mathbf{P}_{\Theta}^{-1} \mathbf{m}_{\ominus} \mathbf{m}_{\Theta}^{\mathrm{T}} \mathbf{P}_{1}+\mathbf{P}_{1} \mathbf{m}_{\ominus} \mathbf{m}_{\Theta}^{\mathrm{T}} \mathbf{P}_{\Theta}^{-1} \mathbf{P}_{N}+ \\
& \mathbf{P}_{N} \sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{R}_{i}^{-1} \mathbf{H}_{i} \mathbf{P}_{N}
\end{aligned}
$$

where

$$
\mathbf{P}_{1} \triangleq\left(\mathbf{P}_{N} \sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{R}_{i}^{-1} \mathbf{H}_{i}-\mathbf{I}_{p}\right)
$$

Note that estimator (17) is consistent, since the MSE converges to $\mathbf{0}$ as $N \rightarrow \infty$, which is equivalent to say that $\hat{\boldsymbol{\Theta}}_{N} \rightarrow \boldsymbol{\Theta}(\mathrm{~ms})$.

Minimum Mean Square Error ...

Minimum Mean Square Error

Problem Definition:

Consider a set of measures $\mathbf{y}_{1: N}$, with $\mathbf{y}_{i} \in \mathbb{R}^{m}$ modeled by

$$
\begin{equation*}
\mathbf{y}_{i}=\mathbf{h}_{i}(\boldsymbol{\theta})+\mathbf{v}_{i}, \quad i=1,2, \ldots, N \tag{19}
\end{equation*}
$$

where $\mathbf{h}_{i}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ is a known function, and $\mathbf{v}_{i} \in \mathbb{R}^{m}$ is an additive error modeled as a realization of a $\mathrm{RV} ; \boldsymbol{\theta} \in \mathbb{R}^{p}$ is the parameter vector.

Consider that $\boldsymbol{\theta}$ is a realization of a $\mathrm{RV} \boldsymbol{\Theta}$ with known pdf $f_{\boldsymbol{\Theta}}(\boldsymbol{\theta}) \rightarrow$
Bayesian Approach

Minimum Mean Square Error

The Minimum Mean Square Error estimator (MMSE) $\hat{\boldsymbol{\theta}}_{N} \in \mathbb{R}^{p}$ of $\boldsymbol{\theta}$ from $\mathbf{y}_{1: N}$ is given by

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{N}=\arg \min _{\overline{\boldsymbol{\theta}}} E\left((\overline{\boldsymbol{\theta}}-\boldsymbol{\Theta})^{\mathrm{T}}(\overline{\boldsymbol{\theta}}-\boldsymbol{\Theta}) \mid \mathbf{Y}_{1: N}\right) \tag{20}
\end{equation*}
$$

Minimum Mean Square Error

General Solution:

We can show that, for any measurement model (19), the general solution to problem (20) is given by the conditional mean:

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{N}=E\left(\boldsymbol{\Theta} \mid \mathbf{Y}_{1: N}\right) \tag{21}
\end{equation*}
$$

which is calculated by means of an a posteriori pdf given by the Bayes Theorem:

$$
\begin{equation*}
f_{\Theta \mid \mathbf{Y}_{1: N}}\left(\boldsymbol{\theta} \mid \mathbf{y}_{1: N}\right)=\frac{f_{\mathbf{Y}_{1: N}} \mid \boldsymbol{\Theta}\left(\mathbf{y}_{1: N} \mid \boldsymbol{\theta}\right) f_{\boldsymbol{\Theta}}(\boldsymbol{\theta})}{f_{\mathbf{Y}_{1: N}}\left(\mathbf{y}_{1: N}\right)} \tag{22}
\end{equation*}
$$

where $\boldsymbol{f}_{\mathbf{Y}_{1: N} \mid \boldsymbol{\Theta}}\left(\mathbf{y}_{1: N} \mid \boldsymbol{\theta}\right)$ is the likelihood function of $\mathbf{Y}_{1: N}$ given $\{\boldsymbol{\Theta}=\boldsymbol{\theta}\}$, $f_{\boldsymbol{\Theta}}(\boldsymbol{\theta})$ is the a priori pdf of $\boldsymbol{\Theta}$, and $f_{\mathbf{Y}_{1: N}}\left(\mathbf{y}_{1: N}\right)$ is a normalizing factor.

Minimum Mean Square Error

Explicit Solution for the Linear Gaussian Model:

Consider that (19) is a linear Gaussian model in the form

$$
\begin{equation*}
\mathbf{y}_{i}=\mathbf{H}_{i} \boldsymbol{\theta}+\mathbf{v}_{i}, \quad i=1,2, \ldots, N \tag{23}
\end{equation*}
$$

where $\boldsymbol{\theta}$ is a realization of a $\mathrm{RV} \Theta \sim \mathcal{N}\left(\mathbf{m}_{\Theta}, \mathbf{P}_{\Theta}\right), \mathbf{v}_{1: N}$ is a realization of an uncorrelated random sequence $\mathbf{V}_{1: N}$, with marginal distribution $\mathbf{V}_{i} \sim$ $\mathcal{N}\left(\mathbf{0}, \mathbf{R}_{i}\right)$, and $\mathbf{H}_{i} \in \mathbb{R}^{m \times p}$ is a known matrix.

In this case, the MMSE estimator (21) is given explicitly by

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}_{N}=\mathbf{P}_{N} \mathbf{P}_{\Theta}^{-1} \mathbf{m}_{\Theta}+\mathbf{P}_{N} \sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{R}_{i}^{-1} \mathbf{y}_{i} \tag{24}
\end{equation*}
$$

where \mathbf{P}_{N} is the matrix defined in (18).

Minimum Mean Square Error

Properties:

The MMSE estimator (24) is identical to the MAP estimator (17). This is due to the Gaussianity of Θ conditioned on $\mathbf{Y}_{1: N}$, i.e.,

$$
\begin{equation*}
f_{\Theta \mid \mathbf{Y}_{1: N}}\left(\boldsymbol{\theta} \mid \mathbf{y}_{1: N}\right)=\mathcal{N}\left(\mathbf{m}_{\Theta \mid Y}, \mathbf{P}_{\Theta \mid Y}\right) \tag{25}
\end{equation*}
$$

with

$$
\begin{align*}
& \mathbf{m}_{\Theta \mid Y}=\hat{\boldsymbol{\theta}}_{N} \tag{26}\\
& \mathbf{P}_{\Theta \mid Y}=\mathbf{P}_{N} \tag{27}
\end{align*}
$$

Therefore, these estiamators have the same properties.

Cramér-Rao Lower Bound...

Cramér-Rao Lower Bound

For Deterministic Parameters:

In this case, the Cramér-Rao Lower Bound (CRLB) says that the covariance (or MSE) of an unbiased estimator is lower limited according to:

$$
\begin{equation*}
E\left(\left(\hat{\boldsymbol{\Theta}}_{N}-\boldsymbol{\theta}\right)\left(\hat{\boldsymbol{\Theta}}_{N}-\boldsymbol{\theta}\right)^{\mathrm{T}}\right) \geq \mathbf{J}^{-1} \tag{28}
\end{equation*}
$$

where \mathbf{J} is the Fisher information matrix, which is defined as

$$
\begin{align*}
\mathbf{J} & \triangleq-E\left(\nabla_{\boldsymbol{\theta}} \nabla_{\boldsymbol{\theta}}^{\mathrm{T}} \ln \Lambda_{N}(\boldsymbol{\theta})\right) \tag{29}\\
& =E\left(\left(\nabla_{\boldsymbol{\theta}} \ln \Lambda_{N}(\boldsymbol{\theta})\right)\left(\nabla_{\boldsymbol{\theta}} \ln \Lambda_{N}(\boldsymbol{\theta})\right)^{\mathrm{T}}\right) \tag{30}
\end{align*}
$$

where $\Lambda_{N}(\boldsymbol{\theta})$ is the likelihood function (defined in slide 11).

Cramér-Rao Lower Bound

For Random Parameters:

In this case, the CRLB has the same form of (28)-(30), however:

- instead of the deterministic vector $\boldsymbol{\theta}$, it considers the RV $\boldsymbol{\Theta}$ and
- the likelihood function is the following conditional pdf:

$$
\Lambda_{N}(\boldsymbol{\Theta})=f_{\mathbf{Y}_{1: N} \mid \boldsymbol{\Theta}}\left(\mathbf{Y}_{1: N} \mid \boldsymbol{\Theta}\right)
$$

Remark:

Note that in the deterministic case, the expectations in (29)-(30) are taken along $\mathbf{Y}_{1: N}$. In the random case, these expectations are taken along $\mathbf{Y}_{1: N}$ and $\boldsymbol{\Theta}$.

Cramér-Rao Lower Bound

Linear Gaussian Model with Deterministic Parameters:

Consider the linear Gaussian model

$$
\begin{equation*}
\mathbf{y}_{i}=\mathbf{H}_{i} \boldsymbol{\theta}+\mathbf{v}_{i} \in \mathbb{R}^{m}, \quad i=1,2, \ldots, N \tag{31}
\end{equation*}
$$

where $\boldsymbol{\theta}$ is an unknown deterministic vector, $\mathbf{v}_{1: N}$ is a realization of an uncorrelated random sequence $\mathbf{V}_{1: N}$, with marginal distribution $\mathbf{V}_{i} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{i}\right)$, and $\mathbf{H}_{i} \in \mathbb{R}^{m \times p}$ is a known matrix.
In this case, the Fisher information matrix is given by

$$
\begin{equation*}
\mathbf{J}=\sum_{i=1}^{N} \mathbf{H}_{i}^{\mathrm{T}} \mathbf{R}_{i}^{-1} \mathbf{H}_{i} \tag{32}
\end{equation*}
$$

Note that \mathbf{J} is equal to the inverse of the covariance of the ML estimator. Because the covariance of the ML estimator reaches its lower bound, we say that it is efficient.

References...

Reference

(in Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation. New York: John Wiley \& Sons, 2001.

