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www.professordavisantos.com
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Problem Definition

State Equation:

Consider the state stochastic process {Xk}. Assume that its realization
{xk} is such that xk+1 ∈ Rnx is dynamically described by

xk+1 = Akxk + Bkuk + Gkwk (1)

where uk ∈ Rnu is a known input, wk ∈ Rnw is an unknown input, and
Ak ∈ Rnx×nx , Bk ∈ Rnx×nu , and Gk ∈ Rnx×nw are known matrices.

Assume that:

1 The initial state x1 is a realization of X1 ∼ N (x̄, P̄), where x̄ ∈ Rnx

and P̄ ∈ Rnx×nx are known.

2 The sequence {wk} is a realization of an uncorrelated SP {Wk}, with
Wk ∼ N (0,Qk), where Qk ∈ Rnw×nw is known.

3 {Wk} and X1 are mutually uncorrelated.
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Problem Definition

Measurement Equation:

Consider a measurement stochastic process {Yk}. Assume that its realiza-
tion {yk} is such that yk+1 ∈ Rny is described by

yk+1 = Ck+1xk+1 + vk+1 (2)

where vk+1 ∈ Rny is an unknown input and Ck+1 ∈ Rny×nx is a known
matrix.

Assume that:

1 The time sequence {vk} is a realization of an uncorrelated SP {Vk},
with Vk ∼ N (0,Rk), where Rk ∈ Rny×ny is known.

2 {Vk}, {Wk}, and X1 are mutually uncorrelated.
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Problem Definition

Problem 1 (MMSE State Estimation):

The MMSE estimate x̂k|j ∈ Rnx of xk from y1:j , u1:k−1, and (1)–(2) is given
by

x̂k|j = arg min
x̄k

E
(

(Xk − x̄k)T (Xk − x̄k) {Y1:j = y1:j}
)

(3)

Remarks:

1 The expectation in (3) is taken on the conditional pdf fXk |Y1:j
(xk |y1:j).

2 From Chapter 3, we known that, in general, the solution of (3) is:

x̂k|j = E (Xk |Y1:j) (4)
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Problem Definition

3 According to the relation between k and j , we define three classes of
estimation problems:

Filtering:

Prediction:

Smoothing:
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Problem Solution

We present the explicit solution to Problem 1 for the filtering problem.

Solution Framework:

The solution is structured as a recursive algorithm, with each iteration di-
vided into two steps:

Prediction: the use of dynamic model (1) to obtain a predictive esti-
mate.

Update: The fusion of new measures with the predictive estimate to
obtain a filtered (or updated) estimate.
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Prediction

Problem 2 (One-Step-Ahead Prediction):

Consider that the filtered estimate at instant k as well as the corresponding
conditional covariance, i.e.,

x̂k|k , E (XkY1:k)

Pk|k , E

((
Xk − X̂k|k

)(
Xk − X̂k|k

)T
Y1:k

)
are known. The problem is to obtain the predictive estimate at instant k+1,
as well as the corresponding covariance:

x̂k+1|k , E (Xk+1Y1:k)

Pk+1|k , E

((
Xk+1 − X̂k+1|k

)(
Xk+1 − X̂k+1|k

)T
Y1:k

)
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Prediction

Solution 1 (Discrete-Time Prediction):

The predictive estimate and underlying covariance are given by:

x̂k+1|k = Ak x̂k|k + Bkuk (5)

Pk+1|k = AkPk|kAT
k + GkQkGT

k (6)

We can also show that the predictive measure ŷk+1|k , E (Yk+1Y1:k) and
the corresponding conditional covariance, i.e.,

PY
k+1|k , E

((
Yk+1 − Ŷk+1|k

)(
Yk+1 − Ŷk+1|k

)T
Y1:k

)
are given by:

ŷk+1|k = Ck+1x̂k+1|k (7)

PY
k+1|k = Ck+1Pk+1|kCT

k+1 + Rk+1 (8)

11 / 22



Prediction

Finally, define the conditional cross-covariance between Xk+1 and Yk+1

given Y1:k :

PXY
k+1|k , E

((
Xk+1 − X̂k+1|k

)(
Yk+1 − Ŷk+1|k

)T
Y1:k

)
We can show that, for the problem under consideration,

PXY
k+1|k = Pk+1|kCT

k+1 (9)
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Prediction

Solution 2 (Continuous-Time Prediction):

Suppose now that, instead of the discrete-time state equation (1), we have
available a continuous-time equation:

ẋ(t) = A(t)x(t) + B(t)u(t) + G(t)w(t) (10)

where
{

w(t)
}

is the realization of a continuous-time zero-mean white noise
with covariance Q(t) at instant t.

In this case, the prediction equations are:

˙̂x(t) = A(t)x̂(t) + B(t)u(t) (11)

Ṗ(t) = A(t)P(t) + P(t)A(t)T + G(t)Q(t)G(t)T (12)
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Prediction

Equations (11)–(12), when integrated from tk to tk+1, with initial conditions
x̂k|k and Pk|k , yield:

x̂k+1|k = x̂(tk+1)

Pk+1|k = P(tk+1)

On the other hand, the predictive measure ŷk+1|k , the corresponding condi-

tional covariance PY
k+1|k as well as the conditional cross-covariance PXY

k+1|k
are all computed, as in the discrete-time prediction, by (7)–(9). �

Remark: We commonly adopt the 4th-order Runge-Kutta method to solve
the ODEs (11)–(12).
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Update

Problem 3 (Update):

Consider that the predictive estimate x̂k+1|k at instant k + 1 as well as the
corresponding conditional covariance Pk+1|k are known. The problem now is
to obtain the filtered estimate and the corresponding conditional covariance
at instant k + 1:

x̂k+1|k+1 , E (Xk+1Y1:k+1)

Pk+1|k+1 , E

((
Xk+1 − X̂k+1|k+1

)(
Xk+1 − X̂k+1|k+1

)T
Y1:k+1

)
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Update

Solution:

The filtered estimate and the corresponding conditional covariance are given
by

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
yk+1 − ŷk+1|k

)
(13)

Pk+1|k+1 = Pk+1|k − PXY
k+1|k

(
PY
k+1|k

)−1 (
PXY
k+1|k

)T
(14)

where Kk+1 is the Kalman gain, given by

Kk+1 = PXY
k+1|k

(
PY
k+1|k

)−1
(15)
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Update

...

Alternatively, equations (14)–(15) can be written, respectively, in the form:

Pk+1|k+1 = Pk+1|k −Kk+1Ck+1Pk+1|k (16)

Kk+1 = Pk+1|kCT
k+1

(
Ck+1Pk+1|kCT

k+1 + Rk+1

)−1
(17)

which is also very common in books and papers.
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Properties

Results:

We can show the following properties of the Kalman filter:

1 The filtered estimator X̂k|k is unbiased.

2 It is the best linear state estimator (for any system).

3 It is the best estimator for linear-Guassian systems.

4 Its innovation sequence {εk}, where εk , Yk − Ŷk|k−1, is Gaus-

sian, white (uncorrelated), with zero mean, and covariance E (εkε
T
k ) ≡

PY
k+1|k .
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Algorithm: Discrete Kalman Filter

1: % Initialization:

2: x̂1|1 ← x̄ P1|1 ← P̄

3: Repeat for k > 1:

4: % Prediction:

5: x̂k+1|k ← Ak x̂k|k + Bkuk
6: ŷk+1|k ← Ck+1x̂k+1|k
7: Pk+1|k ← AkPk|kA

T
k + GkQkG

T
k

8: PYk+1|k ← Ck+1Pk+1|kC
T
k+1 + Rk+1

9: PXYk+1|k ← Pk+1|kC
T
k+1

10: % Update:

11: Kk+1 ← PXYk+1|k(PYk+1|k)−1

12: x̂k+1|k+1 ← x̂k+1|k + Kk+1(yk+1 − ŷk+1|k)

13: Pk+1|k+1 ← Pk+1|k − PXYk+1|k(PYk+1|k)−1(PXYk+1|k)T

14: end-repeat, k ← k + 1
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Algorithm: Continuous–Discrete Kalman Filter

1: % Initialization:

2: x̂1|1 ← x̄ P1|1 ← P̄

3: Repeat for k > 1:
4: % Prediction:

5: Integrate from tk to tk+1 with i.c. x̂k|k and Pk|k:

6: ˙̂x(t) = A(t)x̂(t) + B(t)u(t)
7: Ṗ(t) = A(t)P(t) + P(t)A(t)T + G(t)Q(t)G(t)T

8: x̂k+1|k ← x̂(tk+1) Pk+1|k ← P(tk+1)
9: ŷk+1|k ← Ck+1x̂k+1|k

10: PYk+1|k ← Ck+1Pk+1|kC
T
k+1 + Rk+1

11: PXYk+1|k ← Pk+1|kC
T
k+1

12: % Update:

13: Kk+1 ← PXYk+1|k(PYk+1|k)−1

14: x̂k+1|k+1 ← x̂k+1|k + Kk+1(yk+1 − ŷk+1|k)

15: Pk+1|k+1 ← Pk+1|k − PXYk+1|k(PYk+1|k)−1(PXYk+1|k)T

16: end-repeat, k ← k + 1
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