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Problem Definition

State Equation:

Consider the state stochastic process {Xx}. Assume that its realization
{xx} is such that x,41 € R™ is dynamically described by

Xk+1 = Arxk + Bruyg + Grwy (1)

where u, € R™ is a known input, wi, € R™ is an unknown input, and
A, € R™*™ By € R™ ™ and G, € R™ ™ are known matrices.

Assume that:

1 The initial state x; is a realization of X; ~ N(X,P), where x € R™
and P € R™™"™ are known.

2 The sequence {wy} is a realization of an uncorrelated SP {W/}, with
W, ~ N(0,Q), where Qg € R™*™ is known.

3 {Wy} and X; are mutually uncorrelated.
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Problem Definition

Measurement Equation:

Consider a measurement stochastic process {Yx}. Assume that its realiza-
tion {y,} is such that y,, ; € R" is described by

Yit1 = Cht1Xut1 + Vit (2)

where vi 11 € R™ is an unknown input and Cx 1 € R™*™ is a known
matrix.

Assume that:

1 The time sequence {v,} is a realization of an uncorrelated SP {V,},
with Vi ~ N(0,Rg), where R, € R™*™ is known.

2 {Vi}, {Wk}, and X; are mutually uncorrelated.
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Problem Definition

Problem 1 (MMSE State Estimation):

The MMSE estimate &|; € R™ of x, from yy;, ug:4—1, and (1)—(2) is given
by

%|j = arg min £ ((Xk =) " (Xie = xK)|{ Y1y = yl:f}) 3

Remarks:

1 The expectation in (3) is taken on the conditional pdf fx, v, (xk|y1;)-

2 From Chapter 3, we known that, in general, the solution of (3) is:

Xk = E(Xk[ Y1) (4)
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Problem Definition

3 According to the relation between k and j, we define three classes of
estimation problems:

Xyl

Yl:j /I\

Filtering: ] |
1 2 3 j=k

v Xpelj

1:j /]\

Prediction: —1— i I

1 2 3 j k

v Xyj

1:j

S hi —t— T |
moothing: 1 2 3 K Fi

7/22



Problem Solution. ..

8/22



Problem Solution

We present the explicit solution to Problem 1 for the filtering problem.

Solution Framework:

The solution is structured as a recursive algorithm, with each iteration di-
vided into two steps:

e Prediction: the use of dynamic model (1) to obtain a predictive esti-
mate.

o Update: The fusion of new measures with the predictive estimate to
obtain a filtered (or updated) estimate.

9/22



Problem 2 (One-Step-Ahead Prediction):

Consider that the filtered estimate at instant k as well as the corresponding
conditional covariance, i.e.,

Rejk £ E (XY 1:4)

Puk = E ((Xk - )A(k\k) (Xk - )A(k|k)T Yl:k>

are known. The problem is to obtain the predictive estimate at instant k41,
as well as the corresponding covariance:

Regak = E (KegalY1x)

A ~ T
Pirix = E <<Xk+1 - Xk+l|k> (Xk—l—l - Xk+l|k>

Yl:k)
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Solution 1 (Discrete-Time Prediction):

The predictive estimate and underlying covariance are given by:
X1k = AkXppk + Brug (5)
Piiak = AkPy kAL + GiQiGy (6)

We can also show that the predictive measure ¥, 1|, 2 E(Yis1Y1x) and
the corresponding conditional covariance, i.e.,
Yl:k)

PZ/+1\/< = E ((Yk—i-l - ?k+1|k) (Yk+1 - ?k+1|k>T

are given by:
Ytk = Crt1Rus1/k (7)
PYiajk = Chr1Pry1uCis + Repn (8)
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Finally, define the conditional cross-covariance between Xiy1 and Yy

given Yq.k:
. . T
Pk+1\k = ((Xk+1 - xk+1|k> (Yk+1 - Yk+1|k> Yl:k)

We can show that, for the problem under consideration,

Prlijk = Pir1ikChort 9)
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Solution 2 (Continuous-Time Prediction):

Suppose now that, instead of the discrete-time state equation (1), we have
available a continuous-time equation:

x(t) = A(t)x(t) + B(t)u(t) + G(t)w(t) (10)

where {w(t)} is the realization of a continuous-time zero-mean white noise
with covariance Q(t) at instant t¢.

In this case, the prediction equations are:

%(t) = A(t)k(t) + B(t)u(t) (11)
P(t) = A(t)P(t) + P(1)A(t)" + G(1)Q(£)G(t)" (12)
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Equations (11)—(12), when integrated from tj to tx1, with initial conditions
ﬁk|k and Pk\kr yleld

Rip1)k = X(te+1)

Pitik = P(tks1)

On the other hand, the predictive measure §, ), the corresponding condi-

tional covariance PZ’H‘,{ as well as the conditional cross-covariance Pi(?-/“k
are all computed, as in the discrete-time prediction, by (7)—(9). [

Remark: We commonly adopt the 4th-order Runge-Kutta method to solve
the ODEs (11)—(12).
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Problem 3 (Update):

Consider that the predictive estimate X;41x at instant k + 1 as well as the
corresponding conditional covariance Py 1|, are known. The problem now is
to obtain the filtered estimate and the corresponding conditional covariance
at instant k + 1:

Rpr1kt1 = E (Kig1Y1p41)

. . T
Prsijkrr = E <<Xk+1 - xk+1|k+1> (Xk+1 - xk+1|k+1)

Yl:k+1>
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Solution:

The filtered estimate and the corresponding conditional covariance are given
by

Rit1k+1 = K1k + Kit <Yk+1 - ?k+1|k) (13)
XY y Y '(pxy \T
Prrik+1 = Praae — Plfapi (Pk+1|k> <Pk+l|k> (14)

where Ky is the Kalman gain, given by

—1
XY Y
Kir1 = Plfa (Pk+1|k> (15)
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Alternatively, equations (14)—(15) can be written, respectively, in the form:

Pitijk+1 = Praijk — Ker1Crp1Prgrjk (16)
-1
Kit1 = Prs1xCipr <Ck+1Pk+1|kCE+1 + Rk+1> (17)

which is also very common in books and papers.
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Results:

We can show the following properties of the Kalman filter:

1 The filtered estimator )A(k|k is unbiased.
2 It is the best linear state estimator (for any system).
3 It is the best estimator for linear-Guassian systems.

4 lts innovation sequence {ex}, where ex £ Y, — Yijk—1, is Gaus-
sian, white (uncorrelated), with zero mean, and covariance E(sksf) =
%
Pk
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Algorithm:

% Initialization:
§1|1 — X Pl\l —P
Repeat for k > l:

% Prediction:

Ru1k < ARy + Bruk

Tit1jk € Chr1Xurajk

Priik < AkPk|kA;<F + GkQxGf,

PZ+1\1< = Crp1Prr1ikCirn + Riq

Pﬁ/nk  Pir1kChot

% Update:

Kir1 ¢ PRl (o)

Rherakt1 < Rk + K1 (Tegr — Teran)
130 Priaprt < Prrapk — PRdae(Piyap) PR
14: end-repeat, k<« k+1
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Algorithm:

% Initialization:
§1|1 —X Pl\l «—P
Repeat for k > I:
% Prediction:
Integrate from tx to txy; with i.c. ﬁMk and Pyx:

x(t) = A(t)x(t) + B(t)u(t)

P(t) = A(t)P(t) + P(t)A(t)" + G()a(t)e(t)"
Rirapk < R(tet1) Py < P(tk+1)
Vir1lk € Chr1Rit1ik
P,\:H‘k — Ck+1Pk+1|kCE+1 + Rkt
Pf}:l\k — Pk+1|kCE+1
% Update:

Kit1 Pi((—?-/1|k(PI\</+l\k)71

Rkt ¢ Rurak + K1 (Vir — Fugage)
150 Prgajk+1 < Prgak — Pﬁl|k(PZ+1|k)_1(Pﬁuk)T
16: end-repeat, k <+ k+1
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