Optimal Filtering with Aerospace Applications Chapter 4: Kalman Filter

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

$$
\begin{gathered}
\text { São José dos Campos - SP } \\
2023
\end{gathered}
$$

Contents

(1) Problem Definition

- State Equation
- Measurement Equation
- Problem Statement
(2) Problem Solution
- Prediction
- Update
- Properties
- Algorithms

Problem Definition...

Problem Definition

State Equation:

Consider the state stochastic process $\left\{\mathbf{X}_{k}\right\}$. Assume that its realization $\left\{\mathbf{x}_{k}\right\}$ is such that $\mathbf{x}_{k+1} \in \mathbb{R}^{n_{x}}$ is dynamically described by

$$
\begin{equation*}
\mathbf{x}_{k+1}=\mathbf{A}_{k} \mathbf{x}_{k}+\mathbf{B}_{k} \mathbf{u}_{k}+\mathbf{G}_{k} \mathbf{w}_{k} \tag{1}
\end{equation*}
$$

where $\mathbf{u}_{k} \in \mathbb{R}^{n_{u}}$ is a known input, $\mathbf{w}_{k} \in \mathbb{R}^{n_{w}}$ is an unknown input, and $\mathbf{A}_{k} \in \mathbb{R}^{n_{x} \times n_{x}}, \mathbf{B}_{k} \in \mathbb{R}^{n_{x} \times n_{u}}$, and $\mathbf{G}_{k} \in \mathbb{R}^{n_{x} \times n_{w}}$ are known matrices.

Assume that:

1 The initial state \mathbf{x}_{1} is a realization of $\mathbf{X}_{1} \sim \mathcal{N}(\overline{\mathbf{x}}, \overline{\mathbf{P}})$, where $\overline{\mathbf{x}} \in \mathbb{R}^{n_{x}}$ and $\overline{\mathbf{P}} \in \mathbb{R}^{n_{x} \times n_{x}}$ are known.
2 The sequence $\left\{\mathbf{w}_{k}\right\}$ is a realization of an uncorrelated $\operatorname{SP}\left\{\mathbf{W}_{k}\right\}$, with $\mathbf{W}_{k} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{Q}_{k}\right)$, where $\mathbf{Q}_{k} \in \mathbb{R}^{n_{w} \times n_{w}}$ is known.
$3\left\{\mathbf{W}_{k}\right\}$ and \mathbf{X}_{1} are mutually uncorrelated.

Problem Definition

Measurement Equation:

Consider a measurement stochastic process $\left\{\mathbf{Y}_{k}\right\}$. Assume that its realization $\left\{\mathbf{y}_{k}\right\}$ is such that $\mathbf{y}_{k+1} \in \mathbb{R}^{n_{y}}$ is described by

$$
\begin{equation*}
\mathbf{y}_{k+1}=\mathbf{C}_{k+1} \mathbf{x}_{k+1}+\mathbf{v}_{k+1} \tag{2}
\end{equation*}
$$

where $\mathbf{v}_{k+1} \in \mathbb{R}^{n_{y}}$ is an unknown input and $\mathbf{C}_{k+1} \in \mathbb{R}^{n_{y} \times n_{x}}$ is a known matrix.

Assume that:

1 The time sequence $\left\{\mathbf{v}_{k}\right\}$ is a realization of an uncorrelated $\operatorname{SP}\left\{\mathbf{V}_{k}\right\}$, with $\mathbf{V}_{k} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_{k}\right)$, where $\mathbf{R}_{k} \in \mathbb{R}^{n_{y} \times n_{y}}$ is known.
$2\left\{\mathbf{V}_{k}\right\},\left\{\mathbf{W}_{k}\right\}$, and \mathbf{X}_{1} are mutually uncorrelated.

Problem Definition

Problem 1 (MMSE State Estimation):

The MMSE estimate $\hat{\mathbf{x}}_{k \mid j} \in \mathbb{R}^{n_{x}}$ of \mathbf{x}_{k} from $\mathbf{y}_{1: j}, \mathbf{u}_{1: k-1}$, and (1)-(2) is given by

$$
\begin{equation*}
\hat{\mathbf{x}}_{k \mid j}=\arg \min _{\overline{\mathbf{x}}_{k}} E\left(\left(\mathbf{X}_{k}-\overline{\mathbf{x}}_{k}\right)^{\mathrm{T}}\left(\mathbf{X}_{k}-\overline{\mathbf{x}}_{k}\right)\left\{\mathbf{Y}_{1: j}=\mathbf{y}_{1: j}\right\}\right) \tag{3}
\end{equation*}
$$

Remarks:

1 The expectation in (3) is taken on the conditional pdf $f_{\mathbf{x}_{k} \mid \mathbf{Y}_{1: j}}\left(\mathbf{x}_{k} \mid \mathbf{y}_{1: j}\right)$.
2 From Chapter 3, we known that, in general, the solution of (3) is:

$$
\begin{equation*}
\hat{\mathbf{x}}_{k \mid j}=E\left(\mathbf{X}_{k} \mid \mathbf{Y}_{1: j}\right) \tag{4}
\end{equation*}
$$

Problem Definition

3 According to the relation between k and j, we define three classes of estimation problems:

Filtering:

Prediction:

Smoothing:

Problem Solution...

Problem Solution

We present the explicit solution to Problem 1 for the filtering problem.

Solution Framework:

The solution is structured as a recursive algorithm, with each iteration divided into two steps:

- Prediction: the use of dynamic model (1) to obtain a predictive estimate.
- Update: The fusion of new measures with the predictive estimate to obtain a filtered (or updated) estimate.

Prediction

Problem 2 (One-Step-Ahead Prediction):

Consider that the filtered estimate at instant k as well as the corresponding conditional covariance, i.e.,

$$
\begin{gathered}
\hat{\mathbf{x}}_{k \mid k} \triangleq E\left(\mathbf{X}_{k} \mid \mathbf{Y}_{1: k}\right) \\
\mathbf{P}_{k \mid k} \triangleq E\left(\left(\mathbf{X}_{k}-\hat{\mathbf{X}}_{k \mid k}\right)\left(\mathbf{X}_{k}-\hat{\mathbf{X}}_{k \mid k}\right)^{\mathrm{T}} \mid \mathbf{Y}_{1: k}\right)
\end{gathered}
$$

are known. The problem is to obtain the predictive estimate at instant $k+1$, as well as the corresponding covariance:

$$
\begin{gathered}
\hat{\mathbf{x}}_{k+1 \mid k} \triangleq E\left(\mathbf{X}_{k+1} \mid \mathbf{Y}_{1: k}\right) \\
\mathbf{P}_{k+1 \mid k} \triangleq E\left(\left(\mathbf{X}_{k+1}-\hat{\mathbf{X}}_{k+1 \mid k}\right)\left(\mathbf{X}_{k+1}-\hat{\mathbf{X}}_{k+1 \mid k}\right)^{\mathrm{T}} \mid \mathbf{Y}_{1: k}\right)
\end{gathered}
$$

Prediction

Solution 1 (Discrete-Time Prediction):

The predictive estimate and underlying covariance are given by:

$$
\begin{gather*}
\hat{\mathbf{x}}_{k+1 \mid k}=\mathbf{A}_{k} \hat{\mathbf{x}}_{k \mid k}+\mathbf{B}_{k} \mathbf{u}_{k} \tag{5}\\
\mathbf{P}_{k+1 \mid k}=\mathbf{A}_{k} \mathbf{P}_{k \mid k} \mathbf{A}_{k}^{\mathrm{T}}+\mathbf{G}_{k} \mathbf{Q}_{k} \mathbf{G}_{k}^{\mathrm{T}} \tag{6}
\end{gather*}
$$

We can also show that the predictive measure $\hat{\mathbf{y}}_{k+1 \mid k} \triangleq E\left(\mathbf{Y}_{k+1} \mid \mathbf{Y}_{1: k}\right)$ and the corresponding conditional covariance, i.e.,

$$
\mathbf{P}_{k+1 \mid k}^{Y} \triangleq E\left(\left(\mathbf{Y}_{k+1}-\hat{\mathbf{Y}}_{k+1 \mid k}\right)\left(\mathbf{Y}_{k+1}-\hat{\mathbf{Y}}_{k+1 \mid k}\right)^{\mathrm{T}} \mid \mathbf{Y}_{1: k}\right)
$$

are given by:

$$
\begin{gather*}
\hat{\mathbf{y}}_{k+1 \mid k}=\mathbf{C}_{k+1} \hat{\mathbf{x}}_{k+1 \mid k} \tag{7}\\
\mathbf{P}_{k+1 \mid k}^{Y}=\mathbf{C}_{k+1} \mathbf{P}_{k+1 \mid k} \mathbf{C}_{k+1}^{\mathrm{T}}+\mathbf{R}_{k+1} \tag{8}
\end{gather*}
$$

Prediction

Finally, define the conditional cross-covariance between \mathbf{X}_{k+1} and \mathbf{Y}_{k+1} given $\mathbf{Y}_{1: k}$:

$$
\mathbf{P}_{k+1 \mid k}^{X Y} \triangleq E\left(\left(\mathbf{X}_{k+1}-\hat{\mathbf{X}}_{k+1 \mid k}\right)\left(\mathbf{Y}_{k+1}-\hat{\mathbf{Y}}_{k+1 \mid k}\right)^{\mathrm{T}} \mathbf{Y}_{1: k}\right)
$$

We can show that, for the problem under consideration,

$$
\begin{equation*}
\mathbf{P}_{k+1 \mid k}^{X Y}=\mathbf{P}_{k+1 \mid k} \mathbf{C}_{k+1}^{\mathrm{T}} \tag{9}
\end{equation*}
$$

Prediction

Solution 2 (Continuous-Time Prediction):

Suppose now that, instead of the discrete-time state equation (1), we have available a continuous-time equation:

$$
\begin{equation*}
\dot{\mathbf{x}}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{B}(t) \mathbf{u}(t)+\mathbf{G}(t) \mathbf{w}(t) \tag{10}
\end{equation*}
$$

where $\{\mathbf{w}(t)\}$ is the realization of a continuous-time zero-mean white noise with covariance $\mathbf{Q}(t)$ at instant t.

In this case, the prediction equations are:

$$
\begin{gather*}
\dot{\hat{\mathbf{x}}}(t)=\mathbf{A}(t) \hat{\mathbf{x}}(t)+\mathbf{B}(t) \mathbf{u}(t) \tag{11}\\
\dot{\mathbf{P}}(t)=\mathbf{A}(t) \mathbf{P}(t)+\mathbf{P}(t) \mathbf{A}(t)^{\mathrm{T}}+\mathbf{G}(t) \mathbf{Q}(t) \mathbf{G}(t)^{\mathrm{T}} \tag{12}
\end{gather*}
$$

Prediction

Equations (11)-(12), when integrated from t_{k} to t_{k+1}, with initial conditions $\hat{\mathbf{x}}_{k \mid k}$ and $\mathbf{P}_{k \mid k}$, yield:

$$
\begin{aligned}
\hat{\mathbf{x}}_{k+1 \mid k} & =\hat{\mathbf{x}}\left(t_{k+1}\right) \\
\mathbf{P}_{k+1 \mid k} & =\mathbf{P}\left(t_{k+1}\right)
\end{aligned}
$$

On the other hand, the predictive measure $\hat{\mathbf{y}}_{k+1 \mid k}$, the corresponding conditional covariance $\mathbf{P}_{k+1 \mid k}^{Y}$ as well as the conditional cross-covariance $\mathbf{P}_{k+1 \mid k}^{X Y}$ are all computed, as in the discrete-time prediction, by (7)-(9).

Remark: We commonly adopt the 4th-order Runge-Kutta method to solve the ODEs (11)-(12).

Update

Problem 3 (Update):

Consider that the predictive estimate $\hat{\mathbf{x}}_{k+1 \mid k}$ at instant $k+1$ as well as the corresponding conditional covariance $\mathbf{P}_{k+1 \mid k}$ are known. The problem now is to obtain the filtered estimate and the corresponding conditional covariance at instant $k+1$:

$$
\hat{\mathbf{x}}_{k+1 \mid k+1} \triangleq E\left(\mathbf{X}_{k+1} \mid \mathbf{Y}_{1: k+1}\right)
$$

$$
\mathbf{P}_{k+1 \mid k+1} \triangleq E\left(\left(\mathbf{X}_{k+1}-\hat{\mathbf{X}}_{k+1 \mid k+1}\right)\left(\mathbf{X}_{k+1}-\hat{\mathbf{X}}_{k+1 \mid k+1}\right)^{\mathrm{T}} \mid \mathbf{Y}_{1: k+1}\right)
$$

Update

Solution:

The filtered estimate and the corresponding conditional covariance are given by

$$
\begin{gather*}
\hat{\mathbf{x}}_{k+1 \mid k+1}=\hat{\mathbf{x}}_{k+1 \mid k}+\mathbf{K}_{k+1}\left(\mathbf{y}_{k+1}-\hat{\mathbf{y}}_{k+1 \mid k}\right) \tag{13}\\
\mathbf{P}_{k+1 \mid k+1}=\mathbf{P}_{k+1 \mid k}-\mathbf{P}_{k+1 \mid k}^{X Y}\left(\mathbf{P}_{k+1 \mid k}^{Y}\right)^{-1}\left(\mathbf{P}_{k+1 \mid k}^{X Y}\right)^{\mathrm{T}} \tag{14}
\end{gather*}
$$

where \mathbf{K}_{k+1} is the Kalman gain, given by

$$
\begin{equation*}
\mathbf{K}_{k+1}=\mathbf{P}_{k+1 \mid k}^{X Y}\left(\mathbf{P}_{k+1 \mid k}^{Y}\right)^{-1} \tag{15}
\end{equation*}
$$

Update

Alternatively, equations (14)-(15) can be written, respectively, in the form:

$$
\begin{gather*}
\mathbf{P}_{k+1 \mid k+1}=\mathbf{P}_{k+1 \mid k}-\mathbf{K}_{k+1} \mathbf{C}_{k+1} \mathbf{P}_{k+1 \mid k} \tag{16}\\
\mathbf{K}_{k+1}=\mathbf{P}_{k+1 \mid k} \mathbf{C}_{k+1}^{\mathrm{T}}\left(\mathbf{C}_{k+1} \mathbf{P}_{k+1 \mid k} \mathbf{C}_{k+1}^{\mathrm{T}}+\mathbf{R}_{k+1}\right)^{-1} \tag{17}
\end{gather*}
$$

which is also very common in books and papers.

Properties

Results:

We can show the following properties of the Kalman filter:
1 The filtered estimator $\hat{\mathbf{X}}_{k \mid k}$ is unbiased.
2 It is the best linear state estimator (for any system).
3 It is the best estimator for linear-Guassian systems.
4 Its innovation sequence $\left\{\varepsilon_{k}\right\}$, where $\varepsilon_{k} \triangleq \mathbf{Y}_{k}-\hat{\mathbf{Y}}_{k \mid k-1}$, is Gaussian, white (uncorrelated), with zero mean, and covariance $E\left(\varepsilon_{k} \varepsilon_{k}^{\mathrm{T}}\right) \equiv$ $\mathbf{P}_{k+1 \mid k}^{Y}$.

Algorithm: Discrete Kalman Filter

1: \% Initialization:
2: $\hat{\mathrm{x}}_{1 \mid 1} \leftarrow \overline{\mathrm{x}} \quad \mathrm{P}_{1 \mid 1} \leftarrow \overline{\mathrm{P}}$
3: Repeat for $k>1$:
4: \% Prediction:
5: $\quad \hat{\mathrm{x}}_{k+1 \mid k} \leftarrow \mathrm{~A}_{k} \hat{\mathrm{x}}_{k \mid k}+\mathrm{B}_{k} \mathrm{u}_{k}$
6: $\quad \hat{\mathrm{y}}_{k+1 \mid k} \leftarrow \mathrm{C}_{k+1} \hat{\mathrm{x}}_{k+1 \mid k}$
7: $\quad \mathrm{P}_{k+1 \mid k} \leftarrow \mathrm{~A}_{k} \mathrm{P}_{k \mid k} \mathrm{~A}_{k}^{\mathrm{T}}+\mathrm{G}_{k} \mathrm{Q}_{k} \mathrm{G}_{k}^{\mathrm{T}}$
8: $\quad \mathrm{P}_{k+1 \mid k}^{Y} \leftarrow \mathrm{C}_{k+1} \mathrm{P}_{k+1 \mid k} \mathrm{C}_{k+1}^{\mathrm{T}}+\mathrm{R}_{k+1}$
9: $\quad \mathrm{P}_{k+1 \mid k}^{X Y} \leftarrow \mathrm{P}_{k+1 \mid k} \mathrm{C}_{k+1}^{\mathrm{T}}$
10: \% Update:
11: $\quad \mathrm{K}_{k+1} \leftarrow \mathrm{P}_{k+1 \mid k}^{X Y}\left(\mathrm{P}_{k+1 \mid k}^{Y}\right)^{-1}$
12: $\quad \hat{\mathrm{x}}_{k+1 \mid k+1} \leftarrow \hat{\mathrm{x}}_{k+1 \mid k}+\mathrm{K}_{k+1}\left(\mathrm{y}_{k+1}-\hat{\mathrm{y}}_{k+1 \mid k}\right)$
13: $\quad \mathrm{P}_{k+1 \mid k+1} \leftarrow \mathrm{P}_{k+1 \mid k}-\mathrm{P}_{k+1 \mid k}^{X Y}\left(\mathrm{P}_{k+1 \mid k}^{Y}\right)^{-1}\left(\mathrm{P}_{k+1 \mid k}^{X Y}\right)^{\mathrm{T}}$
14: end-repeat, $k \leftarrow k+1$

Algorithm: Continuous-Discrete Kalman Filter

1: \% Initialization:
2: $\hat{\mathrm{x}}_{1 \mid 1} \leftarrow \overline{\mathrm{x}} \quad \mathrm{P}_{1 \mid 1} \leftarrow \overline{\mathrm{P}}$
3: Repeat for $k>1$:
4: \% Prediction:
5: Integrate from t_{k} to t_{k+1} with i.c. $\hat{\mathrm{x}}_{k \mid k}$ and $\mathrm{P}_{k \mid k}$:
6: $\quad \dot{\hat{\mathrm{x}}}(t)=\mathrm{A}(t) \hat{\mathrm{x}}(t)+\mathrm{B}(t) \mathrm{u}(t)$
7: $\quad \dot{\mathrm{P}}(t)=\mathrm{A}(t) \mathrm{P}(t)+\mathrm{P}(t) \mathrm{A}(t)^{\mathrm{T}}+\mathrm{G}(t) \mathrm{Q}(t) \mathrm{G}(t)^{\mathrm{T}}$
8: $\quad \hat{\mathrm{x}}_{k+1 \mid k} \leftarrow \hat{\mathrm{x}}\left(t_{k+1}\right) \quad \mathrm{P}_{k+1 \mid k} \leftarrow \mathrm{P}\left(t_{k+1}\right)$
9: $\quad \hat{\mathrm{y}}_{k+1 \mid k} \leftarrow \mathrm{C}_{k+1} \hat{\mathrm{x}}_{k+1 \mid k}$
10: $\quad \mathrm{P}_{k+1 \mid k}^{Y} \leftarrow \mathrm{C}_{k+1} \mathrm{P}_{k+1 \mid k} \mathrm{C}_{k+1}^{\mathrm{T}}+\mathrm{R}_{k+1}$
11: $\quad \mathrm{P}_{k+1 \mid k}^{X Y} \leftarrow \mathrm{P}_{k+1 \mid k} \mathrm{C}_{k+1}^{\mathrm{T}}$
12: $\%$ Update:
13: $\quad \mathrm{K}_{k+1} \leftarrow \mathrm{P}_{k+1 \mid k}^{X Y}\left(\mathrm{P}_{k+1 \mid k}^{Y}\right)^{-1}$
14: $\quad \hat{\mathrm{x}}_{k+1 \mid k+1} \leftarrow \hat{\mathrm{x}}_{k+1 \mid k}+\mathrm{K}_{k+1}\left(\mathrm{y}_{k+1}-\hat{\mathrm{y}}_{k+1 \mid k}\right)$
15: $\quad \mathrm{P}_{k+1 \mid k+1} \leftarrow \mathrm{P}_{k+1 \mid k}-\mathrm{P}_{k+1 \mid k}^{X Y}\left(\mathrm{P}_{k+1 \mid k}^{Y}\right)^{-1}\left(\mathrm{P}_{k+1 \mid k}^{X Y}\right)^{\mathrm{T}}$
16: end-repeat, $k \leftarrow k+1$

References...

References

围 Bar－Shalom，Y．，Li，R．X．，Kirubarajan，T．Estimation with Applica－ tions to Tracking and Navigation．New Jersey：Jonh Wiley \＆Sons， 2001.

圊 Anderson，B．D．O．，Moore，J．B．Optimal Filtering．New York：Dover， 2005.

目 Maybeck，P．S．Stochastic Models，Estimation and Control．New York：Academic Press， 1979.

國 Gelb，A．Applied Optimal Estimation．Cambridge：The M．I．T．Press， 1974.

