# Optimal Filtering with Aerospace Applications <br> Chapter 5: Computational Aspects of the Kalman Filter 

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

São José dos Campos - SP 2023

## Contents

(1) Motivation
(2) Information Filter
(3) Filter with Sequential Update

4 Square-Root Filter

Motivation. . .

## Motivation

## Numerical Difficulties of the Conventional Kalman Filter:

1 Prediction:
The prediction formula for the conditional covariance

$$
\mathbf{P}_{k+1 \mid k}=\mathbf{A}_{k} \mathbf{P}_{k \mid k} \mathbf{A}_{k}^{\mathrm{T}}+\mathbf{G}_{k} \mathbf{Q}_{k} \mathbf{G}_{k}^{\mathrm{T}}
$$

can produce a non-symmetric matrix.

This issue can be overcome by either a suitable implementation of the products (of three matrices) or by using a square-root formulation.

## Motivation

## 2 Update:

The updating formula for the conditional covariance

$$
\mathbf{P}_{k+1 \mid k+1}=\mathbf{P}_{k+1 \mid k}-\mathbf{K}_{k+1} \mathbf{C}_{k+1} \mathbf{P}_{k+1 \mid k}
$$

can produce a non-symmetric or negative-definite or indefinite matrix.

This issue can be overcome by using the Joseph formula:
$\mathbf{P}_{k+1 \mid k+1}=\left(\mathbf{I}-\mathbf{K}_{k+1} \mathbf{C}_{k+1}\right) \mathbf{P}_{k+1 \mid k}\left(\mathbf{I}-\mathbf{K}_{k+1} \mathbf{C}_{k+1}\right)^{\mathrm{T}}+\mathbf{K}_{k+1} \mathbf{R}_{k+1} \mathbf{K}_{k+1}^{\mathrm{T}}$
or by using a square-root formulation.

## Motivation

## 3 Kalman Gain:

The Kalman gain formula

$$
\mathbf{K}_{k+1}=\mathbf{P}_{k+1 \mid k} \mathbf{C}_{k+1}^{\mathrm{T}}\left(\mathbf{C}_{k+1} \mathbf{P}_{k+1 \mid k} \mathbf{C}_{k+1}^{\mathrm{T}}+\mathbf{R}_{k+1}\right)^{-1}
$$

has a relatively high computational cost, due to the matrix inversion, if the measure vector has a large dimension.

This issue can be mitigated by using one of the following alternatives:

- the information filter
- matrix factorization methods
- sequential update of scalar (or lower-dimensional) measures.


## Information filter...

## Information Filter

## Preliminary Definitions:

Define, respectively, the updated information matrix and the predicted information matrix:

$$
\begin{align*}
\mathbf{L}_{k \mid k} & \triangleq\left(\mathbf{P}_{k \mid k}\right)^{-1}  \tag{1}\\
\mathbf{L}_{k+1 \mid k} & \triangleq\left(\mathbf{P}_{k+1 \mid k}\right)^{-1} \tag{2}
\end{align*}
$$

Define also the following transformed updated and predicted estimates, respectively:

$$
\begin{gather*}
\hat{\mathbf{z}}_{k \mid k} \triangleq \mathbf{L}_{k \mid k} \hat{\mathbf{x}}_{k \mid k}  \tag{3}\\
\hat{\mathbf{z}}_{k+1 \mid k} \triangleq \mathbf{L}_{k+1 \mid k} \hat{\mathbf{x}}_{k+1 \mid k} \tag{4}
\end{gather*}
$$

## Information Filter

## Prediction:

Given $\mathbf{L}_{k \mid k}$ and $\hat{\mathbf{z}}_{k \mid k}$, one can calculate $\mathbf{L}_{k+1 \mid k}$ and $\hat{\mathbf{z}}_{k+1 \mid k}$ by:

$$
\begin{gather*}
\boldsymbol{\Pi}_{k}=\mathbf{A}_{k}^{-\mathrm{T}} \mathbf{L}_{k \mid k} \mathbf{A}_{k}^{-1}  \tag{5}\\
\mathbf{K}_{k}^{*}=\boldsymbol{\Pi}_{k} \mathbf{G}_{k}\left(\mathbf{G}_{k}^{\mathrm{T}} \boldsymbol{\Pi}_{k} \mathbf{G}_{k}+\mathbf{Q}_{k}^{-1}\right)^{-1} \tag{6}
\end{gather*}
$$

$$
\begin{gather*}
\hat{\mathbf{z}}_{k+1 \mid k}=\left(\mathbf{I}-\mathbf{K}_{k}^{*} \mathbf{G}_{k}^{\mathrm{T}}\right) \mathbf{A}_{k}^{-\mathrm{T}} \hat{\mathbf{z}}_{k \mid k}+\left(\mathbf{I}-\mathbf{K}_{k}^{*} \mathbf{G}_{k}^{\mathrm{T}}\right) \boldsymbol{\Pi}_{k} \mathbf{B}_{k} \mathbf{u}_{k}  \tag{7}\\
\mathbf{L}_{k+1 \mid k}=\left(\mathbf{I}-\mathbf{K}_{k}^{*} \mathbf{G}_{k}^{\mathrm{T}}\right) \boldsymbol{\Pi}_{k} \tag{8}
\end{gather*}
$$

## Remark:

Note that $\mathbf{A}_{k}$ must be non-singular!

## Information Filter

## Update:

Given $\mathbf{L}_{k+1 \mid k}$ and $\hat{\mathbf{z}}_{k+1 \mid k}$, one can calculate $\mathbf{L}_{k+1 \mid k+1}$ and $\hat{\mathbf{z}}_{k+1 \mid k+1}$ by:

$$
\begin{align*}
\hat{\mathbf{z}}_{k+1 \mid k+1} & =\hat{\mathbf{z}}_{k+1 \mid k}+\mathbf{C}_{k+1}^{\mathrm{T}} \mathbf{R}_{k+1}^{-1} \mathbf{y}_{k+1}  \tag{9}\\
\mathbf{L}_{k+1 \mid k+1} & =\mathbf{L}_{k+1 \mid k}+\mathbf{C}_{k+1}^{\mathrm{T}} \mathbf{R}_{k+1}^{-1} \mathbf{C}_{k+1} \tag{10}
\end{align*}
$$

Whenever necessary, one can recover the filtered estimate as well as the corresponding covariance, by:

$$
\begin{gathered}
\mathbf{P}_{k+1 \mid k+1}=\mathbf{L}_{k+1 \mid k+1}^{-1} \\
\hat{\mathbf{x}}_{k+1 \mid k+1}=\mathbf{P}_{k+1 \mid k+1} \hat{\mathbf{z}}_{k+1 \mid k+1}
\end{gathered}
$$

Filter with sequential update...

## Filter with Sequential Update

## Problem Definition:

We want now to update the prior estimate $\hat{\mathbf{x}}_{k+1 \mid k} \in \mathbb{R}^{n_{x}}$ by assimilating the scalar components of $\mathbf{y}_{k+1} \in \mathbb{R}^{n_{y}}$,

$$
\mathbf{y}_{k+1} \triangleq\left[\begin{array}{lllll}
y_{k+1,1} & y_{k+1,2} & \ldots & y_{k+1, n_{y}}
\end{array}\right]^{\mathrm{T}}
$$

one by one, sequentially.

## Filter with Sequential Update

## Problem Solution (for uncorrelated measurement noise):

First, let us describe $Y_{k+1, i}$ by:

$$
\begin{equation*}
Y_{k+1, i}=\mathbf{C}_{k+1, i} \mathbf{X}_{k+1}+V_{k+1, i} \tag{11}
\end{equation*}
$$

where $\mathbf{C}_{k+1, i} \in \mathbb{R}^{1 \times n_{x}}$ is a known matrix, $\mathbf{X}_{k+1} \in \mathbb{R}^{n_{x}}$ is the state vector, and $V_{k+1, i} \in \mathbb{R}$ is the measurement noise, with $V_{k+1, i} \sim \mathcal{N}\left(0, R_{k+1, i}\right)$, and $R_{k+1, i} \in \mathbb{R}$.
Moreover, one can suppose that the set $\left\{\mathbf{X}_{k+1}, \mathbf{V}_{1: k}, V_{k+1,1}, \ldots, V_{k+1, i}\right\}$ is uncorrelated and the conditional distribution of $\mathbf{X}_{k+1}$ given

$$
\left\{\mathbf{Y}_{1: k}, Y_{k+1,1}, \ldots, Y_{k+1, i-1}\right\}
$$

is

$$
\begin{equation*}
\mathbf{X}_{k+1} \mid \mathbf{Y}_{1: k}, Y_{k+1,1}, \ldots, Y_{k+1, i-1} \sim \mathcal{N}\left(\hat{\mathbf{x}}_{k+1 \mid k+1, i-1}, \mathbf{P}_{k+1 \mid k+1, i-1}\right) \tag{12}
\end{equation*}
$$

## Filter with Sequential Update

...Problem Solution:

The optimal (in the MMSE sense) assimilation of the realization $y_{k+1, i}$ of $Y_{k+1, i}$ to the prior estimate $\hat{\mathbf{x}}_{k+1 \mid k+1, i-1}$ is given by

$$
\begin{gather*}
\mathbf{K}_{k+1, i}=\mathbf{P}_{k+1 \mid k+1, i-1} \mathbf{C}_{k+1, i}^{\mathrm{T}} /\left(\mathbf{C}_{k+1, i} \mathbf{P}_{k+1 \mid k+1, i-1} \mathbf{C}_{k+1, i}^{\mathrm{T}}+R_{k+1, i}\right)  \tag{13}\\
\hat{\mathbf{x}}_{k+1 \mid k+1, i}=\hat{\mathbf{x}}_{k+1 \mid k+1, i-1}+\mathbf{K}_{k+1, i}\left(y_{k+1, i}-\mathbf{C}_{k+1, i} \hat{\mathbf{x}}_{k+1 \mid k+1, i-1}\right)  \tag{14}\\
\mathbf{P}_{k+1 \mid k+1, i}=\mathbf{P}_{k+1 \mid k+1, i-1}-\mathbf{K}_{k+1, i} \mathbf{C}_{k+1, i} \mathbf{P}_{k+1 \mid k+1, i-1} \tag{15}
\end{gather*}
$$

## Filter with Sequential Update

At the beginning of the loop:
When $i=1$, the prior information of equation (12) is reduced to

$$
\begin{equation*}
\mathbf{X}_{k+1} \mid \mathbf{Y}_{1: k} \sim \mathcal{N}\left(\hat{\mathbf{x}}_{k+1 \mid k}, \mathbf{P}_{k+1 \mid k}\right) \tag{16}
\end{equation*}
$$

and, therefore,

$$
\begin{align*}
& \hat{\mathbf{x}}_{k+1 \mid k+1,0}=\hat{\mathbf{x}}_{k+1 \mid k}  \tag{17}\\
& \mathbf{P}_{k+1 \mid k+1,0}=\mathbf{P}_{k+1 \mid k} \tag{18}
\end{align*}
$$

At the end of the loop:
After assimilating the $n_{y}$-th scalar measure, the filtered estimate as well as the corresponding covariance are obtained as

$$
\begin{align*}
\hat{\mathbf{x}}_{k+1 \mid k+1} & =\hat{\mathbf{x}}_{k+1 \mid k+1, n_{y}}  \tag{19}\\
\mathbf{P}_{k+1 \mid k+1} & =\mathbf{P}_{k+1 \mid k+1, n_{y}} \tag{20}
\end{align*}
$$

## Filter with Sequential Update

## Correlated Measurement Noise:

Suppose now that the covariance $\mathbf{R}_{k+1} \in \mathbb{R}^{n_{y} \times n_{y}}$ is not diagonal (i.e., its components are, in general, correlated). However, it turns out that one can obtain a transformed measurement model:

$$
\begin{equation*}
\overline{\mathbf{Y}}_{k+1}=\overline{\mathbf{C}}_{k+1} \mathbf{X}_{k+1}+\overline{\mathbf{V}}_{k+1} \tag{21}
\end{equation*}
$$

where $\overline{\mathbf{Y}}_{k+1}=\mathbf{R}_{k+1}^{-1 / 2} \mathbf{Y}_{k+1}, \overline{\mathbf{C}}_{k+1}=\mathbf{R}_{k+1}^{-1 / 2} \mathbf{C}_{k+1}, \overline{\mathbf{V}}_{k+1}=\mathbf{R}_{k+1}^{-1 / 2} \mathbf{V}_{k+1}$, and $\mathbf{R}_{k+1}^{-1 / 2}$ is the Cholesky factor of $\mathbf{R}_{k+1}$, such that:

$$
\begin{equation*}
\overline{\mathbf{R}}_{k+1} \triangleq E\left(\overline{\mathbf{V}}_{k+1} \overline{\mathbf{V}}_{k+1}^{\mathrm{T}}\right)=\mathbf{I}_{m} \tag{22}
\end{equation*}
$$

In this case, in (13)-(15), we use $\overline{\mathbf{y}}_{k+1}, \overline{\mathbf{C}}_{k+1}$, and $\overline{\mathbf{R}}_{k+1}$ instead of $\mathbf{y}_{k+1}$, $\mathbf{C}_{k+1}$, and $\mathbf{R}_{k+1}$, respectively.

## Square-root filter ...

## Square-Root Filter

## Preliminary Definitions:

Consider the Cholesky decomposition of $\mathbf{P}_{k+1 \mid k}$ and $\mathbf{P}_{k+1 \mid k+1}$ :

$$
\begin{gather*}
\mathbf{P}_{k+1 \mid k}=\mathbf{S}_{k+1 \mid k} \mathbf{S}_{k+1 \mid k}^{\mathrm{T}}  \tag{23}\\
\mathbf{P}_{k+1 \mid k+1}=\mathbf{S}_{k+1 \mid k+1} \mathbf{S}_{k+1 \mid k+1}^{\mathrm{T}} \tag{24}
\end{gather*}
$$

where the Cholesky factors $\mathbf{S}_{k+1 \mid k} \in \mathbb{R}^{n_{x} \times n_{x}}$ and $\mathbf{S}_{k+1 \mid k+1} \in \mathbb{R}^{n_{x} \times n_{x}}$ are lower-triangular matrices.

Denote the Cholesky factors of $\mathbf{Q}_{k}$ and $\mathbf{R}_{k}$ by $\mathbf{Q}_{k}^{1 / 2}$ and $\mathbf{R}_{k}^{1 / 2}$, respectively.

## Square-Root Filter

## Prediction:

Consider the time-propagation formula for the conditional state covariance:

$$
\begin{equation*}
\mathbf{P}_{k+1 \mid k}=\mathbf{A}_{k} \mathbf{P}_{k \mid k} \mathbf{A}_{k}^{\mathrm{T}}+\mathbf{G}_{k} \mathbf{Q}_{k} \mathbf{G}_{k}^{\mathrm{T}} \tag{25}
\end{equation*}
$$

Using the definitions (23)-(24), we can immediately re-write (25) into the form

$$
\begin{align*}
& \mathbf{S}_{k+1 \mid k} \mathbf{S}_{k+1 \mid k}^{\mathrm{T}}=\mathbf{M M}^{\mathrm{T}}  \tag{26}\\
& \mathbf{M} \triangleq\left[\begin{array}{ll}
\mathbf{A}_{k} \mathbf{S}_{k \mid k} & \mathbf{G}_{k} \mathbf{Q}_{k}^{1 / 2}
\end{array}\right]
\end{align*}
$$

We can finally obtain $\mathbf{S}_{k+1 \mid k}=\mathcal{R}^{\mathrm{T}}$, where $\mathcal{R}$ is the upper-triangular matrix of the QR decomposition of $\mathbf{M}^{\mathrm{T}}$.

## Square-Root Filter

## Update:

Consider the Joseph formula for the state covariance update:

$$
\begin{equation*}
\mathbf{P}_{k+1 \mid k+1}=\left(\mathbf{I}-\mathbf{K}_{k+1} \mathbf{C}_{k+1}\right) \mathbf{P}_{k+1 \mid k}\left(\mathbf{I}-\mathbf{K}_{k+1} \mathbf{C}_{k+1}\right)^{\mathrm{T}}+\mathbf{K}_{k+1} \mathbf{R}_{k+1} \mathbf{K}_{k+1}^{\mathrm{T}} \tag{28}
\end{equation*}
$$

Again, using the definitions (23)-(24), we can immediately re-write (28) into the form

$$
\begin{gather*}
\mathbf{S}_{k+1 \mid k+1} \mathbf{S}_{k+1 \mid k+1}^{\mathrm{T}}=\overline{\mathbf{M}} \overline{\mathrm{M}}^{\mathrm{T}}  \tag{29}\\
\overline{\mathbf{M}} \triangleq\left[\begin{array}{ll}
\left(\mathbf{I}-\mathbf{K}_{k+1} \mathbf{C}_{k+1}\right) \mathbf{S}_{k+1 \mid k} & \mathbf{K}_{k+1} \mathbf{R}_{k+1}^{1 / 2}
\end{array}\right] \tag{30}
\end{gather*}
$$

We can finally obtain $\mathbf{S}_{k+1 \mid k+1}=\overline{\mathcal{R}}^{\mathrm{T}}$, where $\overline{\mathcal{R}}$ is the upper-triangular matrix of the $Q R$ decomposition of $\overline{\mathrm{M}}^{\mathrm{T}}$.

## Square-Root Filter

## Kalman Gain:

Consider the traditional Kalman gain formula:

$$
\begin{equation*}
\mathbf{K}_{k+1}=\mathbf{P}_{k+1 \mid k}^{X Y}\left(\mathbf{P}_{k+1 \mid k}^{Y}\right)^{-1} \tag{31}
\end{equation*}
$$

where

$$
\begin{gathered}
\mathbf{P}_{k+1 \mid k}^{Y}=\mathbf{C}_{k+1} \mathbf{P}_{k+1 \mid k} \mathbf{C}_{k+1}^{\mathrm{T}}+\mathbf{R}_{k+1} \\
\mathbf{P}_{k+1 \mid k}^{X Y}=\mathbf{P}_{k+1 \mid k} \mathbf{C}_{k+1}^{\mathrm{T}}
\end{gathered}
$$

Consider also the Cholesky decomposition of $\mathbf{P}_{k+1 \mid k}^{Y}=\check{\mathbf{M}} \check{M}^{\mathrm{T}}$. It turns out that we can obtain $\mathbf{K}_{k+1}$ by solving the system of equations

$$
\begin{equation*}
\mathbf{K}_{k+1} \check{\mathbf{M}}^{\check{M}^{\mathrm{T}}}=\mathbf{P}_{k+1 \mid k}^{X Y} \tag{32}
\end{equation*}
$$

by backward- and forward-substitution, respectively.

References ...

## References

围 Bar－Shalom，Y．，Li，R．X．，Kirubarajan，T．Estimation with Applica－ tions to Tracking and Navigation．New Jersey：Jonh Wiley \＆Sons， 2001.

圊 Anderson，B．D．O．，Moore，J．B．Optimal Filtering．New York：Dover， 2005.

围 Bierman，G．J．Factorization Methods for Discrete Sequential Es－ timation．New York：Academic Press， 1977.

