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Motivation

Numerical Difficulties of the Conventional Kalman Filter:

1 Prediction:

The prediction formula for the conditional covariance

Pk+1|k = AkPk|kAT
k + GkQkGT

k

can produce a non-symmetric matrix.

This issue can be overcome by either a suitable implementation of the
products (of three matrices) or by using a square-root formulation.
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Motivation

2 Update:

The updating formula for the conditional covariance

Pk+1|k+1 = Pk+1|k −Kk+1Ck+1Pk+1|k

can produce a non-symmetric or negative-definite or indefinite matrix.

This issue can be overcome by using the Joseph formula:

Pk+1|k+1 = (I−Kk+1Ck+1)Pk+1|k(I−Kk+1Ck+1)T+Kk+1Rk+1KT
k+1

or by using a square-root formulation.
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Motivation

3 Kalman Gain:

The Kalman gain formula

Kk+1 = Pk+1|kCT
k+1

(
Ck+1Pk+1|kCT

k+1 + Rk+1

)−1
has a relatively high computational cost, due to the matrix inversion,
if the measure vector has a large dimension.

This issue can be mitigated by using one of the following alternatives:

the information filter

matrix factorization methods

sequential update of scalar (or lower-dimensional) measures.
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Information Filter

Preliminary Definitions:

Define, respectively, the updated information matrix and the predicted in-
formation matrix:

Lk|k , (Pk|k)−1 (1)

Lk+1|k , (Pk+1|k)−1 (2)

Define also the following transformed updated and predicted estimates, re-
spectively:

ẑk|k , Lk|k x̂k|k (3)

ẑk+1|k , Lk+1|k x̂k+1|k (4)
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Information Filter

Prediction:

Given Lk|k and ẑk|k , one can calculate Lk+1|k and ẑk+1|k by:

Πk = A−Tk Lk|kA−1k (5)

K∗k = ΠkGk

(
GT

k ΠkGk + Q−1k

)−1
(6)

ẑk+1|k =
(

I−K∗kGT
k

)
A−Tk ẑk|k +

(
I−K∗kGT

k

)
ΠkBkuk (7)

Lk+1|k =
(

I−K∗kGT
k

)
Πk (8)

Remark:

Note that Ak must be non-singular!
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Information Filter

Update:

Given Lk+1|k and ẑk+1|k , one can calculate Lk+1|k+1 and ẑk+1|k+1 by:

ẑk+1|k+1 = ẑk+1|k + CT
k+1R−1k+1yk+1 (9)

Lk+1|k+1 = Lk+1|k + CT
k+1R−1k+1Ck+1 (10)

Whenever necessary, one can recover the filtered estimate as well as the
corresponding covariance, by:

Pk+1|k+1 = L−1k+1|k+1

x̂k+1|k+1 = Pk+1|k+1ẑk+1|k+1
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Filter with Sequential Update

Problem Definition:

We want now to update the prior estimate x̂k+1|k ∈ Rnx by assimilating the
scalar components of yk+1 ∈ Rny ,

yk+1 ,
[
yk+1,1 yk+1,2 ... yk+1,ny

]T
,

one by one, sequentially.
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Filter with Sequential Update

Problem Solution (for uncorrelated measurement noise):

First, let us describe Yk+1,i by:

Yk+1,i = Ck+1,iXk+1 + Vk+1,i (11)

where Ck+1,i ∈ R1×nx is a known matrix, Xk+1 ∈ Rnx is the state vector,
and Vk+1,i ∈ R is the measurement noise, with Vk+1,i ∼ N (0,Rk+1,i ), and
Rk+1,i ∈ R.

Moreover, one can suppose that the set
{

Xk+1,V1:k ,Vk+1,1, ...,Vk+1,i

}
is

uncorrelated and the conditional distribution of Xk+1 given{
Y1:k ,Yk+1,1, . . . ,Yk+1,i−1

}
is

Xk+1Y1:k ,Yk+1,1, ...,Yk+1,i−1 ∼ N (x̂k+1|k+1,i−1,Pk+1|k+1,i−1) (12)
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Filter with Sequential Update

...Problem Solution:

The optimal (in the MMSE sense) assimilation of the realization yk+1,i of
Yk+1,i to the prior estimate x̂k+1|k+1,i−1 is given by

Kk+1,i = Pk+1|k+1,i−1CT
k+1,i/

(
Ck+1,iPk+1|k+1,i−1CT

k+1,i + Rk+1,i

)
(13)

x̂k+1|k+1,i = x̂k+1|k+1,i−1 + Kk+1,i

(
yk+1,i − Ck+1,i x̂k+1|k+1,i−1

)
(14)

Pk+1|k+1,i = Pk+1|k+1,i−1 −Kk+1,iCk+1,iPk+1|k+1,i−1 (15)
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Filter with Sequential Update

At the beginning of the loop:

When i = 1, the prior information of equation (12) is reduced to

Xk+1Y1:k ∼ N (x̂k+1|k ,Pk+1|k) (16)

and, therefore,

x̂k+1|k+1,0 = x̂k+1|k (17)

Pk+1|k+1,0 = Pk+1|k (18)

At the end of the loop:

After assimilating the ny -th scalar measure, the filtered estimate as well as
the corresponding covariance are obtained as

x̂k+1|k+1 = x̂k+1|k+1,ny (19)

Pk+1|k+1 = Pk+1|k+1,ny (20)
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Filter with Sequential Update

Correlated Measurement Noise:

Suppose now that the covariance Rk+1 ∈ Rny×ny is not diagonal (i.e., its
components are, in general, correlated). However, it turns out that one can
obtain a transformed measurement model:

Ȳk+1 = C̄k+1Xk+1 + V̄k+1 (21)

where Ȳk+1 = R
−1/2
k+1 Yk+1, C̄k+1 = R

−1/2
k+1 Ck+1, V̄k+1 = R

−1/2
k+1 Vk+1, and

R
−1/2
k+1 is the Cholesky factor of Rk+1, such that:

R̄k+1 , E
(

V̄k+1V̄
T
k+1

)
= Im (22)

In this case, in (13)–(15), we use ȳk+1, C̄k+1, and R̄k+1 instead of yk+1,
Ck+1, and Rk+1, respectively.
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Square-Root Filter

Preliminary Definitions:

Consider the Cholesky decomposition of Pk+1|k and Pk+1|k+1:

Pk+1|k = Sk+1|kST
k+1|k (23)

Pk+1|k+1 = Sk+1|k+1ST
k+1|k+1 (24)

where the Cholesky factors Sk+1|k ∈ Rnx×nx and Sk+1|k+1 ∈ Rnx×nx are
lower-triangular matrices.

Denote the Cholesky factors of Qk and Rk by Q
1/2
k and R

1/2
k , respectively.
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Square-Root Filter

Prediction:

Consider the time-propagation formula for the conditional state covariance:

Pk+1|k = AkPk|kAT
k + GkQkGT

k (25)

Using the definitions (23)–(24), we can immediately re-write (25) into the
form

Sk+1|kST
k+1|k = MMT (26)

M ,
[
AkSk|k GkQ

1/2
k

]
(27)

We can finally obtain Sk+1|k = RT, where R is the upper-triangular matrix

of the QR decomposition of MT.
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Square-Root Filter

Update:

Consider the Joseph formula for the state covariance update:

Pk+1|k+1 = (I−Kk+1Ck+1)Pk+1|k(I−Kk+1Ck+1)T + Kk+1Rk+1KT
k+1

(28)
Again, using the definitions (23)–(24), we can immediately re-write (28)
into the form

Sk+1|k+1ST
k+1|k+1 = M̄M̄

T
(29)

M̄ ,
[
(I−Kk+1Ck+1)Sk+1|k Kk+1R

1/2
k+1

]
(30)

We can finally obtain Sk+1|k+1 = R̄T, where R̄ is the upper-triangular

matrix of the QR decomposition of M̄
T

.
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Square-Root Filter

Kalman Gain:

Consider the traditional Kalman gain formula:

Kk+1 = PXY
k+1|k

(
PY
k+1|k

)−1
(31)

where
PY
k+1|k = Ck+1Pk+1|kCT

k+1 + Rk+1

PXY
k+1|k = Pk+1|kCT

k+1

Consider also the Cholesky decomposition of PY
k+1|k = M̌M̌

T
. It turns out

that we can obtain Kk+1 by solving the system of equations

Kk+1M̌M̌
T

= PXY
k+1|k (32)

by backward- and forward-substitution, respectively.
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