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Problem Definition

State Equation:

Consider a state SP {Xk} and its realization {xk}, with xk ∈ Rnx dynami-
cally described by

xk+1 = fk (xk ,uk) + Gkwk (1)

where uk ∈ Rnu is a known input, wk ∈ Rnw is an unknown input, fk :

Rnx × Rnu → Rnx is a given non-linear function, and Gk ∈ Rnx×nw is a
known matrix.

Assume that:

1 The initial state x1 is a realization of X1, which is assumed to be
approximately symmetric and to have a known mean x̄ ∈ Rnx and a
known covariance P̄ ∈ Rnx×nx . For short, we denote X1 ∼ (x̄, P̄).

2 The sequence {wk} is a realization of an uncorrelated SP {Wk}, with
an approx. symmetric Wk ∼ (0,Qk), where Qk ∈ Rnw×nw is known.

3
{
{Wk} ,X1

}
is uncorrelated.
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Problem Definition

Measurement Equation:

Consider a measurement SP {Yk} and its realization {yk}, where yk+1 ∈
Rny is described by

yk+1 = hk+1 (xk+1) + vk+1 (2)

where vk+1 ∈ Rny is an unknown input and hk+1 : Rnx → Rny is a given
non-linear function.

Assume that:

1 The sequence {vk} is a realization of the uncorrelated SP {Vk}, with
approx. symmetric Vk ∼ (0,Rk), where Rk ∈ Rny×ny is known.

2
{
{Vk} , {Wk} ,X1

}
is uncorrelated.
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Problem Definition

Problem Statement:

The problem is to obtain an approximately optimal (MMSE) recursive filter
for estimating {xk} using {yk}, {uk}, and (1)–(2).

Comments:

In this course, we are going to present the following solutions to this problem:

i. EKF: Extended Kalman Filter (in this chapter);

ii. UKF: Unscented Kalman Filter; and

iii. EnKF: Ensemble Kalman Filter.
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Discrete Extended Kalman Filter

Functional Approximations:

Let us approximate the non-linear functions fk and hk by Taylor series ex-
pansion and truncation:

fk (xk ,uk) ≈ fk
(

x̂k|k ,uk

)
+ Fk

(
xk − x̂k|k

)
(3)

hk+1 (xk+1) ≈ hk+1

(
x̂k+1|k

)
+ Hk+1

(
xk+1 − x̂k+1|k

)
(4)

where x̂k|k , E
(
xk |Y1:k

)
, x̂k+1|k , E

(
xk+1|Y1:k

)
, and

Fk ,
∂fk

(
x̂k|k ,uk

)
∂x

, Hk+1 ,
dhk+1

(
x̂k+1|k

)
dx

(5)
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Discrete Extended Kalman Filter

Linearized Model:

Using (3)–(4), we can approximate system (1)–(2) by:

xk+1 = Fkxk + Gkwk +

(
fk
(

x̂k|k ,uk

)
− Fk x̂k|k

)
(6)

yk+1 = Hk+1xk+1 + vk+1 +

(
hk+1

(
x̂k+1|k

)
−Hk+1x̂k+1|k

)
(7)

Formulation Overview:

As follows, we obtain the discrete extended Kalman filter for system (1)–(2)
as the discrete Kalman filter applied to (6)–(7).
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Discrete Extended Kalman Filter

Discrete-Time Prediction:

Given the updated (or filtered) mean x̂k|k and covariance Pk|k , we can
calculate the predictive mean x̂k+1|k and covariance Pk+1|k by:

x̂k+1|k = fk
(

x̂k|k ,uk

)
(8)

Pk+1|k = FkPk|kFT
k + GkQkGT

k (9)
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Discrete Extended Kalman Filter

Other Predictive Expectations:

We can also show that

ŷk+1|k = hk+1

(
x̂k+1|k

)
(10)

PY
k+1|k = Hk+1Pk+1|kHT

k+1 + Rk+1 (11)

PXY
k+1|k = Pk+1|kHT

k+1 (12)
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Discrete Extended Kalman Filter

Update:

The updated (or filtered) mean and covariance are computed by

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
yk+1 − ŷk+1|k

)
(13)

Pk+1|k+1 = Pk+1|k − PXY
k+1|k

(
PY
k+1|k

)−1 (
PXY
k+1|k

)T
(14)

where Kk+1 is the Kalman gain, which is given by

Kk+1 = PXY
k+1|k

(
PY
k+1|k

)−1
(15)
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Discrete Extended Kalman Filter

Comments:

The functions fk and hk must be differentiable w.r.t. xk .

The EKF is a kind of benchmark in state estimation of non-linear sys-
tems subject to stochastic inputs.

For the EKF to be stable and to show a good convergence rate, we
must tune the matrices P̄ and Qk (we are going to see that in the next
computational exercise).
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Algorithm: Discrete EKF

1: % Initialization:

2: x̂1|1 ← x̄ P1|1 ← P̄

3: Repeat for k > 1:

4: % Prediction:

5: x̂k+1|k ← fk(x̂k|k , uk)

6: Pk+1|k ← FkPk|kF
T
k + GkQkG

T
k

7: ŷk+1|k ← hk+1(x̂k+1|k)

8: PYk+1|k ← Hk+1Pk+1|kH
T
k+1 + Rk+1

9: PXYk+1|k ← Pk+1|kH
T
k+1

10: % Update:

11: Kk+1 ← PXYk+1|k(PYk+1|k)−1

12: x̂k+1|k+1 ← x̂k+1|k + Kk+1(yk+1 − ŷk+1|k)

13: Pk+1|k+1 ← Pk+1|k − PXYk+1|k(PYk+1|k)−1(PXYk+1|k)T

14: end-repeat, k ← k + 1
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