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Problem Definition

State Equation:

Consider a state SP {Xy} and its realization {xx}, with x, € R"* dynami-
cally described by

X1 = i (X, uk) + Grwy (1)

where u, € R™ is a known input, wy, € R™ is an unknown input, fy :
R™ x R™ — R"™ is a given non-linear function, and G, € R™*™ is 3
known matrix.

Assume that:

1 The initial state x; is a realization of X;, which is assumed to be
approximately symmetric and to have a known mean X € R"™ and a
known covariance P € R™*"x. For short, we denote X; ~ (X, P).

2 The sequence {wg} is a realization of an uncorrelated SP {W,}, with
an approx. symmetric Wy ~ (0, Qx), where Q4 € R™*™ is known.

3 {{Wy}, X1} is uncorrelated.
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Problem Definition

Measurement Equation:

Consider a measurement SP {Y} and its realization {y,}, where y,,; €
R"™ is described by

Yir1 = b1 (Ret1) + Vit (2)

where vi 1 € R is an unknown input and hy; : R™ — R™ is a given
non-linear function.

Assume that:

1 The sequence {vk} is a realization of the uncorrelated SP {V}, with
approx. symmetric Vi ~ (0, Ry), where Ry € R™*™ is known.

2 {{Vi},{Wy}, X1} is uncorrelated.
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Problem Definition

Problem Statement:

The problem is to obtain an approximately optimal (MMSE) recursive filter
for estimating {xx} using {y,}, {uk}, and (1)—(2).

Comments:

In this course, we are going to present the following solutions to this problem:

i. EKF: Extended Kalman Filter (in this chapter);
ii. UKF: Unscented Kalman Filter; and
iil. EnKF: Ensemble Kalman Filter.
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Discrete Extended Kalman Filter. ..
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Discrete Extended Kalman Filter

Functional Approximations:

Let us approximate the non-linear functions fx and hy by Taylor series ex-

pansion and truncation:

fie (XK, uk) ~ fi <>A<k|k, Uk) + Fi (Xk - >A<k|k> 3)

hi1 (Xeq1) = gy (ik+1|k> +Hya (Xk+1 - >A<k+1|k) (4)

where R, £ E (xi|Y1:4), Rep1je = E (Xeg1|Y1:4), and

_— Of <>A<§xk,u1<) C H A dhyyq 5ik+1|k) )
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Discrete Extended Kalman Filter

Linearized Model:

Using (3)—(4), we can approximate system (1)—(2) by:
Xk1 = Fixk + Gewy + (fk (f(k|k, Uk) = Fkﬁk|k) (6)
Yirr = HiraXeq1 + Vipr + (hk—H <>A<k+1|k> - Hk+1*k+1|k) (7)

Formulation Overview:

As follows, we obtain the discrete extended Kalman filter for system (1)—(2)
as the discrete Kalman filter applied to (6)—(7).
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Discrete Extended Kalman Filter

Discrete-Time Prediction:

Given the updated (or filtered) mean X, and covariance Pk, we can
calculate the predictive mean X1, and covariance Py, by:

Xtk = fi (ﬁk|k, Uk) (8)

Pii1jk = FiPrFi + G, Q,Gy (9)
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Discrete Extended Kalman Filter

Other Predictive Expectations:

We can also show that

Yk = it (ik+1|k> (10)
PZ+1|k = Hip1PisaHi 1 + Ri (11)

Pi(11|k = PrsiHien (12)
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Discrete Extended Kalman Filter

Update:

The updated (or filtered) mean and covariance are computed by

Xpr1)k+1 = X1k + Kiga <Yk+1 - 9k+1|k) (13)
XY PY -1 PXY T 1
Prtik+1 = Praae — Plfap ( k+1|k> ( k+1|k> (14)

where Ky is the Kalman gain, which is given by

—1
Kir1 = PRlap <PZ+1|k> (15)
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Discrete Extended Kalman Filter

Comments:

@ The functions f, and h, must be differentiable w.r.t. x.

@ The EKF is a kind of benchmark in state estimation of non-linear sys-
tems subject to stochastic inputs.

@ For the EKF to be stable and to show a good convergence rate, we

must tune the matrices P and Qy (we are going to see that in the next
computational exercise).
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Algorithm: Discrete EKF

% Initialization:
ﬁ1|1 — X Pyj1 3
Repeat for k > 1:

% Prediction:

S PIRIDIR SR P16 PIPRITY

Pri1jk < FkPrikFp + GkQuGy

Tir1k € brr1(Regain)

Pzﬂ\k — Hk+1Pk+1|kHE+1 + Ri+1

PRtk ¢ PrrakHig

% Update:

Kiet1 Pfruk(PZH\k)_l

Rerakt1 < Rurak + K1 (Vrgr — Feran)
130 Prepajet < Prgaje — Pfl/1|k(P/\</+1|k)7l(Pf<<rl|k
14: end-repeat, k<« k+1
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