MP-208

Optimal Filtering with Aerospace Applications Chapter 6: Extended Kalman Filter Part II: Continuous-Discrete Formulation

> Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

> > São José dos Campos - SP 2023

Problem Definition

- State Equation
- Measurement Equation
- Problem Statement

2 Continuous-Discrete Extended Kalman Filter

- Prediction
- Update
- Algorithm

Problem Definition...

Problem Definition

State Equation:

Consider a continuous state SP $\{\mathbf{X}(t)\}\$ and its realization $\{\mathbf{x}(t)\}\$, with $\mathbf{x}(t) \in \mathbb{R}^{n_x}$ dynamically described by

$$\dot{\mathbf{x}}(t) = \mathbf{f}\left(\mathbf{x}(t), \mathbf{u}(t)\right) + \mathbf{g}\left(\mathbf{x}(t)\right) \mathbf{w}(t)$$
(1)

where $\mathbf{u}(t) \in \mathbb{R}^{n_u}$ is a known input, $\mathbf{w}(t) \in \mathbb{R}^{n_w}$ is an unknown input, and $\mathbf{f} : \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ and $\mathbf{g} : \mathbb{R}^{n_x} \to \mathbb{R}^{n_x \times n_w}$ are given non-linear functions.

Assume that:

- 1 The initial state $\mathbf{x}(t_0)$ is a realization of the approx. symmetric $\mathbf{X}(t_0) \sim (\bar{\mathbf{x}}, \bar{\mathbf{P}})$, where $\bar{\mathbf{x}} \in \mathbb{R}^{n_x}$ and $\bar{\mathbf{P}} \in \mathbb{R}^{n_x \times n_x}$ are known.
- 2 The signal $\{\mathbf{w}(t)\}\$ is a realization of the uncorrelated SP $\{\mathbf{W}(t)\}\$, with the approx. symmetric $\mathbf{W}(t) \sim (\mathbf{0}, \mathbf{Q}(t))$, where $\mathbf{Q}(t) \in \mathbb{R}^{n_w \times n_w}$ is known.

$$\left\{\left\{\mathbf{W}(t)\right\},\mathbf{X}(t_{0})\right\}$$
 is mutually uncorrelated.

Measurement Equation:

Consider a measurement SP $\{\mathbf{Y}_k\}$ and its realization $\{\mathbf{y}_k\}$, with $\mathbf{y}_{k+1} \in \mathbb{R}^{n_y}$ described by

$$\mathbf{y}_{k+1} = \mathbf{h}_{k+1} (\mathbf{x}_{k+1}) + \mathbf{v}_{k+1}$$
 (2)

where $\mathbf{v}_{k+1} \in \mathbb{R}^{n_y}$ is an unknown input and $\mathbf{h}_{k+1} : \mathbb{R}^{n_x} \to \mathbb{R}^{n_y}$ is a given non-linear function.

Assume that:

1 The sequence $\{\mathbf{v}_k\}$ is a realization of the uncorrelated SP $\{\mathbf{V}_k\}$, with the approx. symmetric $\mathbf{V}_k \sim (\mathbf{0}, \mathbf{R}_k)$, where $\mathbf{R}_k \in \mathbb{R}^{n_y \times n_y}$ is known.

2 $\{\{V_k\}, \{W_k\}, X_1\}$ is mutually uncorrelated.

Problem Statement:

The problem is to obtain an approximately optimal (MMSE) recursive filter for estimating $\{\mathbf{x}(t)\}$ using $\{\mathbf{y}_k\}$, $\{\mathbf{u}(t)\}$, and (1)–(2).

Comments:

In this course, we are going to present the following solutions to this problem:

- i. EKF: Extended Kalman Filter (in this chapter);
- ii. UKF: Unscented Kalman Filter; and
- iii. EnKF: Ensemble Kalman Filter.

Continuous-Discrete Extended Kalman Filter...

Continuous-Discrete Extended Kalman Filter

Functional Approximations:

Let us approximate the non-linear functions **f**, **g**, and **h**_k by Taylor series expansion and truncation:

$$\mathbf{f}(\mathbf{x}(t),\mathbf{u}(t)) \approx \mathbf{f}(\hat{\mathbf{x}}(t),\mathbf{u}(t)) + \mathbf{F}(t)(\mathbf{x}(t) - \hat{\mathbf{x}}(t))$$
(3)

$$\mathbf{g}(\mathbf{x}(t)) \approx \mathbf{g}(\hat{\mathbf{x}}(t)) \triangleq \mathbf{G}(t)$$
 (4)

$$\mathbf{h}_{k+1}\left(\mathbf{x}_{k+1}\right) \approx \mathbf{h}_{k+1}\left(\hat{\mathbf{x}}_{k+1|k}\right) + \mathbf{H}_{k+1}\left(\mathbf{x}_{k+1} - \hat{\mathbf{x}}_{k+1|k}\right)$$
(5)

where
$$\hat{\mathbf{x}}(t) \triangleq E(\mathbf{x}(t)|\mathbf{Y}_{1:k})$$
, $\hat{\mathbf{x}}_{k+1|k} \triangleq E(\mathbf{x}_{k+1}|\mathbf{Y}_{1:k})$, and

$$\mathbf{F}(t) \triangleq \frac{\partial \mathbf{f}\left(\hat{\mathbf{x}}(t), \mathbf{u}(t)\right)}{\partial \mathbf{x}} , \quad \mathbf{H}_{k+1} \triangleq \frac{d\mathbf{h}_{k+1}\left(\hat{\mathbf{x}}_{k+1|k}\right)}{d\mathbf{x}}$$
(6)

Linearized Model:

Using (3)–(5), we can approximate system (1)–(2) by:

$$\dot{\mathbf{x}}(t) = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{G}(t)\mathbf{w}(t) + \left(\mathbf{f}\left(\hat{\mathbf{x}}(t), \mathbf{u}(t)\right) - \mathbf{F}(t)\hat{\mathbf{x}}(t)\right)$$
(7)
$$\mathbf{y}_{k+1} = \mathbf{H}_{k+1}\mathbf{x}_{k+1} + \mathbf{v}_{k+1} + \left(\mathbf{h}_{k+1}\left(\hat{\mathbf{x}}_{k+1|k}\right) - \mathbf{H}_{k+1}\hat{\mathbf{x}}_{k+1|k}\right)$$
(8)

Formulation Overview:

As follows, we obtain the continuous-discrete extended Kalman filter for system (1)-(2) as the continuous-discrete Kalman filter applied to (7)-(8).

Continuous-Discrete Extended Kalman Filter

Continuous-Time Prediction:

Given the filtered mean $\hat{\mathbf{x}}_{k|k}$ and covariance $\mathbf{P}_{k|k}$, we can calculate the predictive mean $\hat{\mathbf{x}}_{k+1|k} = \hat{\mathbf{x}}(t_{k+1})$ and covariance $\mathbf{P}_{k+1|k} = \mathbf{P}(t_{k+1})$, by integrating the ODEs:

$$\dot{\hat{\mathbf{x}}}(t) = \mathbf{f}\left(\hat{\mathbf{x}}(t), \mathbf{u}(t)\right)$$
(9)

$$\dot{\mathbf{P}}(t) = \mathbf{F}(t)\mathbf{P}(t) + \mathbf{P}(t)\mathbf{F}(t)^{\mathrm{T}} + \mathbf{G}(t)\mathbf{Q}(t)\mathbf{G}(t)^{\mathrm{T}}$$
(10)

from t_k to t_{k+1} , with i.e. $\hat{\mathbf{x}}(t_k) = \hat{\mathbf{x}}_{k|k}$, $\mathbf{P}(t_k) = \mathbf{P}_{k|k}$.

Remarks:

- We consider that $\mathbf{u}(t) = \mathbf{u}_k, \forall t \in [t_k, t_{k+1}).$
- We usually adopt the 4th-order Runge-Kutta method to solve the ODEs (9)–(10).

Other Predictive Expectations:

We can also show that

$$\hat{\mathbf{y}}_{k+1|k} = \mathbf{h}_{k+1} \left(\hat{\mathbf{x}}_{k+1|k} \right) \tag{11}$$

$$\mathbf{P}_{k+1|k}^{Y} = \mathbf{H}_{k+1}\mathbf{P}_{k+1|k}\mathbf{H}_{k+1}^{\mathrm{T}} + \mathbf{R}_{k+1}$$
(12)

$$\mathsf{P}_{k+1|k}^{XY} = \mathsf{P}_{k+1|k} \mathsf{H}_{k+1}^{\mathrm{T}}$$
(13)

Update:

The updated (filtered) mean and covariance are computed by

$$\hat{\mathbf{x}}_{k+1|k+1} = \hat{\mathbf{x}}_{k+1|k} + \mathbf{K}_{k+1} \left(\mathbf{y}_{k+1} - \hat{\mathbf{y}}_{k+1|k} \right)$$
(14)
$$\mathbf{P}_{k+1|k+1} = \mathbf{P}_{k+1|k} - \mathbf{P}_{k+1|k}^{XY} \left(\mathbf{P}_{k+1|k}^{Y} \right)^{-1} \left(\mathbf{P}_{k+1|k}^{XY} \right)^{\mathrm{T}}$$
(15)

where K_{k+1} is the Kalman gain, which is given by

$$\mathbf{K}_{k+1} = \mathbf{P}_{k+1|k}^{XY} \left(\mathbf{P}_{k+1|k}^{Y} \right)^{-1}$$
(16)

Comments:

- The functions **f** and **h**_k must be differentiable w.r.t. $\mathbf{x}(t)$ and \mathbf{x}_k , respectively.
- The EKF is a kind of benchmark in state estimation of non-linear systems subject to stochastic inputs.
- For the EKF to be stable and to show a good convergence rate, we must tune the matrices P
 and Q(t) (we are going to see that soon in a case study).

Algorithm: Continuous-Discrete EKF

1: % Initialization: 2: $\hat{\mathbf{x}}_{1|1} \leftarrow \bar{\mathbf{x}} \qquad \mathbf{P}_{1|1} \leftarrow \bar{\mathbf{P}}$ 3: Repeat for k > 1: % Prediction: 4: 5: Integrate from t_k to t_{k+1} , with i.c. $\hat{x}_{k|k}$ and $P_{k|k}$: 6: $\dot{\hat{\mathbf{x}}}(t) = \mathbf{f}(\hat{\mathbf{x}}(t), \mathbf{u}_k)$ 7: $\dot{\mathbf{P}}(t) = \mathbf{F}(t)\mathbf{P}(t) + \mathbf{P}(t)\mathbf{F}(t)^{\mathrm{T}} + \mathbf{G}(t)\mathbf{Q}(t)\mathbf{G}(t)^{\mathrm{T}}$ $\hat{\mathbf{x}}_{k+1|k} \leftarrow \hat{\mathbf{x}}(t_{k+1}) \qquad \mathbf{P}_{k+1|k} \leftarrow \mathbf{P}(t_{k+1})$ 8: $\hat{\mathbf{y}}_{k+1|k} \leftarrow \mathbf{h}_{k+1}(\hat{\mathbf{x}}_{k+1|k})$ 9: $\mathbf{P}_{k+1|k}^{\boldsymbol{Y}} \leftarrow \mathbf{H}_{k+1}\mathbf{P}_{k+1|k}\mathbf{H}_{k+1}^{\mathrm{T}} + \mathbf{R}_{k+1}$ 10: $\mathbf{P}_{\boldsymbol{\nu} \perp 1 \mid \boldsymbol{\nu}}^{XY} \leftarrow \mathbf{P}_{k+1 \mid k} \mathbf{H}_{k+1}^{\mathrm{T}}$ 11: 12: % Update: $\mathsf{K}_{k+1} \leftarrow \mathsf{P}_{k+1|k}^{XY} (\mathsf{P}_{k+1|k}^Y)^{-1}$ 13: $\hat{\mathbf{x}}_{k+1|k+1} \leftarrow \hat{\mathbf{x}}_{k+1|k} + \mathbf{K}_{k+1}(\mathbf{y}_{k+1} - \hat{\mathbf{y}}_{k+1|k})$ 14: $\mathbf{P}_{k+1|k+1} \leftarrow \mathbf{P}_{k+1|k} - \mathbf{P}_{k+1|k}^{XY} (\mathbf{P}_{k+1|k}^{Y})^{-1} (\mathbf{P}_{k+1|k}^{XY})^{\mathrm{T}}$ 15: 16: end-repeat, $k \leftarrow k+1$

References...

- Bar-Shalom, Y., Li, R. X., Kirubarajan, T. Estimation with Applications to Tracking and Navigation. New Jersey: Jonh Wiley & Sons, 2001.
- Anderson, B. D. O., Moore, J. B. **Optimal Filtering**. New York: Dover, 2005.
- Maybeck, P. S. Stochastic Models, Estimation and Control. New York: Academic Press, 1979.
- Gelb, A. **Applied Optimal Estimation**. Cambridge: The M.I.T. Press, 1974.