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Problem Definition

State Equation:

Consider a continuous state SP {X(t)} and its realization {x(t)}, with
x(t) € R™ dynamically described by

x(t) = f (x(£), u(t)) + & (x(t)) w(t) (1)

where u(t) € R™ is a known input, w(t) € R™ is an unknown input, and
f:R™ x R™ — R™ and g : R™ — R™*™ are given non-linear functions.
Assume that:

1 The initial state x(tp) is a realization of the approx. symmetric X(tp) ~
(x,P), where x € R™ and P € R™*"™ are known.

2 The signal {w(t)} is a realization of the uncorrelated SP {W(t)},
with the approx. symmetric W(t) ~ (0,Q(t)), where Q(t) € R"*"™
is known.

3 {{W(t)} ,X(to)} is mutually uncorrelated.
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Problem Definition

Measurement Equation:

Consider a measurement SP {Y} and its realization {y, }, withy,,; € R™
described by

Vi1 = Mg (Xet1) + Vi (2)

where vii 1 € R is an unknown input and hy; : R™ — R™ is a given
non-linear function.

Assume that:

1 The sequence {vi} is a realization of the uncorrelated SP {V}, with
the approx. symmetric Vi ~ (0, Ry), where Ry € R™*™ is known.

2 {{V«},{Wi}, X1} is mutually uncorrelated.
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Problem Definition

Problem Statement:

The problem is to obtain an approximately optimal (MMSE) recursive filter
for estimating {x(t)} using {y,}, {u(t)}, and (1)—(2).

Comments:

In this course, we are going to present the following solutions to this problem:

i. EKF: Extended Kalman Filter (in this chapter);
ii. UKF: Unscented Kalman Filter; and
iil. EnKF: Ensemble Kalman Filter.
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Continuous-Discrete Extended Kalman Filter

Functional Approximations:

Let us approximate the non-linear functions f, g, and h, by Taylor series
expansion and truncation:

f(x(t),u(t)) ~ f(X(t), u(t)) + F(t) (x(t) — %(t)) (3)
g (x(t)) =~ g (x(t)) = G(t) (4)
hyi1 (Xk1) = hgia (ﬁk+1|k> + Hg1 (Xk+1 - >A<k+1|k) (5)

where X(t) £ E (x(t)|Y1:k), Rps1x = E (Xs1]Y1:4), and

L dhe (f(k+1|k>
Hit1 = ix (6)
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Continuous-Discrete Extended Kalman Filter

Linearized Model:

Using (3)—(5), we can approximate system (1)—(2) by:
K(t) = F(e)x(e) + G()w(e) + (F((1), u(t) — F(OR(D)) (1)

Yir1 = Hep1Xer1 + Vi + (hk+1 (ﬁk+1|k> - Hk+1>A<k+1|k) (8)

Formulation Overview:

As follows, we obtain the continuous-discrete extended Kalman filter for
system (1)—(2) as the continuous-discrete Kalman filter applied to (7)—(8).
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Continuous-Discrete Extended Kalman Filter

Continuous-Time Prediction:

Given the filtered mean X, and covariance P, we can calculate the

predictive mean X1k = X(tk+1) and covariance Py, = P(tks1), by
integrating the ODEs:

x(t) = f (x(t), u(t)) (9)
P(t) = F(t)P(t) + P(t)F(t)" + G(t)Q(£)G(t)" (10)

from tx to txi1, with i.c. X(tx) = Rek, P(tk) = Pk
Remarks:
e We consider that u(t) = ug, Vt € [tk, tkr1)-
@ We usually adopt the 4th-order Runge-Kutta method to solve the ODEs

(9)-(10).
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Continuous-Discrete Extended Kalman Filter

Other Predictive Expectations:

We can also show that

Yk = it (ik+1|k> (11)
PZ+1|k = Hip1PisaHi 1 + Ri (12)

Pi(11|k = PrsiHien (13)
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Continuous-Discrete Extended Kalman Filter

Update:

The updated (filtered) mean and covariance are computed by

Rp1)k+1 = Xpeg1k + Krta <Yk+1 — yk+l|k> (14)
XY Y “1oxy T
Pitiikr1 = Prrike — Piga (Pk+1|k> (Pk+1|k) (15)

where K1 is the Kalman gain, which is given by

-1
Kiy1 = Pi(-?-/1|k (PZ+1|/<> (16)
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Continuous-Discrete Extended Kalman Filter

Comments:

@ The functions f and hy, must be differentiable w.r.t. x(t) and x,
respectively.

@ The EKF is a kind of benchmark in state estimation of non-linear sys-
tems subject to stochastic inputs.

@ For the EKF to be stable and to show a good convergence rate, we

must tune the matrices P and Q(t) (we are going to see that soon in
a case study).
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Algorithm: Continuous-Discrete EKF

1:
2:
3:
4:
5:
6:
7
8:
9:

% Initialization:
§1|1 —X Pl\l «—P
Repeat for k > I:
% Prediction:
Integrate from tx to txy41, with i.c. ﬁMk and Py:
2(t) = £ (&(t), ux)
P(t) = F(t)P(t) + P(t)F(t)" +G(t)a(t)a(t)"
Rirapk < R(tet1) Py < P(tk+1)
\PERIPR o VEEY 6 IUETPY
PZH“( — Hp1Prgauigg + Ript

—
e

=
N =

XY T
Pl € Prorakigg
% Update:
XY 1
Kir1 < PRl (Pl ap) ™
Rprakr1 < Rk + K1 (Tegr — Teran)

. XY Y —1(pXY T
150 Prgapkrt < Prgapke = PrpaeProan) ™ Phyaw)
16: end-repeat, k <+ k+1

= =
W
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