
MP-208
Optimal Filtering with Aerospace Applications

Chapter 6: Extended Kalman Filter
Part II: Continuous-Discrete Formulation

Prof. Dr. Davi Antônio dos Santos
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Problem Definition

State Equation:

Consider a continuous state SP
{

X(t)
}

and its realization
{

x(t)
}

, with
x(t) ∈ Rnx dynamically described by

ẋ(t) = f
(
x(t),u(t)

)
+ g

(
x(t)

)
w(t) (1)

where u(t) ∈ Rnu is a known input, w(t) ∈ Rnw is an unknown input, and
f : Rnx × Rnu → Rnx and g : Rnx → Rnx×nw are given non-linear functions.

Assume that:

1 The initial state x(t0) is a realization of the approx. symmetric X(t0) ∼
(x̄, P̄), where x̄ ∈ Rnx and P̄ ∈ Rnx×nx are known.

2 The signal
{

w(t)
}

is a realization of the uncorrelated SP
{

W(t)
}

,
with the approx. symmetric W(t) ∼ (0,Q(t)), where Q(t) ∈ Rnw×nw

is known.

3
{{

W(t)
}
,X(t0)

}
is mutually uncorrelated.
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Problem Definition

Measurement Equation:

Consider a measurement SP {Yk} and its realization {yk}, with yk+1 ∈ Rny

described by

yk+1 = hk+1 (xk+1) + vk+1 (2)

where vk+1 ∈ Rny is an unknown input and hk+1 : Rnx → Rny is a given
non-linear function.

Assume that:

1 The sequence {vk} is a realization of the uncorrelated SP {Vk}, with
the approx. symmetric Vk ∼ (0,Rk), where Rk ∈ Rny×ny is known.

2
{
{Vk} , {Wk} ,X1

}
is mutually uncorrelated.
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Problem Definition

Problem Statement:

The problem is to obtain an approximately optimal (MMSE) recursive filter
for estimating

{
x(t)

}
using {yk},

{
u(t)

}
, and (1)–(2).

Comments:

In this course, we are going to present the following solutions to this problem:

i. EKF: Extended Kalman Filter (in this chapter);

ii. UKF: Unscented Kalman Filter; and

iii. EnKF: Ensemble Kalman Filter.
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Continuous-Discrete Extended Kalman Filter

Functional Approximations:

Let us approximate the non-linear functions f, g, and hk by Taylor series
expansion and truncation:

f
(
x(t),u(t)

)
≈ f
(
x̂(t),u(t)

)
+ F(t)

(
x(t)− x̂(t)

)
(3)

g
(
x(t)

)
≈ g

(
x̂(t)

)
, G (t) (4)

hk+1 (xk+1) ≈ hk+1

(
x̂k+1|k

)
+ Hk+1

(
xk+1 − x̂k+1|k

)
(5)

where x̂(t) , E
(
x(t)|Y1:k

)
, x̂k+1|k , E

(
xk+1|Y1:k

)
, and

F(t) ,
∂f
(
x̂(t),u(t)

)
∂x

, Hk+1 ,
dhk+1

(
x̂k+1|k

)
dx

(6)
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Continuous-Discrete Extended Kalman Filter

Linearized Model:

Using (3)–(5), we can approximate system (1)–(2) by:

ẋ(t) = F(t)x(t) + G(t)w(t) +
(

f
(
x̂(t),u(t)

)
− F(t)x̂(t)

)
(7)

yk+1 = Hk+1xk+1 + vk+1 +

(
hk+1

(
x̂k+1|k

)
−Hk+1x̂k+1|k

)
(8)

Formulation Overview:

As follows, we obtain the continuous-discrete extended Kalman filter for
system (1)–(2) as the continuous-discrete Kalman filter applied to (7)–(8).
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Continuous-Discrete Extended Kalman Filter

Continuous-Time Prediction:

Given the filtered mean x̂k|k and covariance Pk|k , we can calculate the
predictive mean x̂k+1|k = x̂(tk+1) and covariance Pk+1|k = P(tk+1), by
integrating the ODEs:

˙̂x(t) = f
(
x̂(t),u(t)

)
(9)

Ṗ(t) = F(t)P(t) + P(t)F(t)T + G(t)Q(t)G(t)T (10)

from tk to tk+1, with i.c. x̂(tk) = x̂k|k , P(tk) = Pk|k .

Remarks:

We consider that u(t) = uk , ∀t ∈ [tk , tk+1).

We usually adopt the 4th-order Runge-Kutta method to solve the ODEs
(9)–(10).
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Continuous-Discrete Extended Kalman Filter

Other Predictive Expectations:

We can also show that

ŷk+1|k = hk+1

(
x̂k+1|k

)
(11)

PY
k+1|k = Hk+1Pk+1|kHT

k+1 + Rk+1 (12)

PXY
k+1|k = Pk+1|kHT

k+1 (13)
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Continuous-Discrete Extended Kalman Filter

Update:

The updated (filtered) mean and covariance are computed by

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
yk+1 − ŷk+1|k

)
(14)

Pk+1|k+1 = Pk+1|k − PXY
k+1|k

(
PY
k+1|k

)−1 (
PXY
k+1|k

)T
(15)

where Kk+1 is the Kalman gain, which is given by

Kk+1 = PXY
k+1|k

(
PY
k+1|k

)−1
(16)
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Continuous-Discrete Extended Kalman Filter

Comments:

The functions f and hk must be differentiable w.r.t. x(t) and xk ,
respectively.

The EKF is a kind of benchmark in state estimation of non-linear sys-
tems subject to stochastic inputs.

For the EKF to be stable and to show a good convergence rate, we
must tune the matrices P̄ and Q(t) (we are going to see that soon in
a case study).
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Algorithm: Continuous-Discrete EKF

1: % Initialization:

2: x̂1|1 ← x̄ P1|1 ← P̄

3: Repeat for k > 1:
4: % Prediction:

5: Integrate from tk to tk+1, with i.c. x̂k|k and Pk|k:

6: ˙̂x(t) = f
(
x̂(t), uk

)
7: Ṗ(t) = F(t)P(t) + P(t)F(t)T + G(t)Q(t)G(t)T

8: x̂k+1|k ← x̂(tk+1) Pk+1|k ← P(tk+1)
9: ŷk+1|k ← hk+1(x̂k+1|k)

10: PYk+1|k ← Hk+1Pk+1|kH
T
k+1 + Rk+1

11: PXYk+1|k ← Pk+1|kH
T
k+1

12: % Update:

13: Kk+1 ← PXYk+1|k(PYk+1|k)−1

14: x̂k+1|k+1 ← x̂k+1|k + Kk+1(yk+1 − ŷk+1|k)

15: Pk+1|k+1 ← Pk+1|k − PXYk+1|k(PYk+1|k)−1(PXYk+1|k)T

16: end-repeat, k ← k + 1
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