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Problem Definition

State Equation:

Consider a state SP {Xk} and its realization {xk}, with xk ∈ Rnx dynami-
cally described by

xk+1 = fk (xk ,uk) + Gkwk (1)

where uk ∈ Rnu is a known input, wk ∈ Rnw is an unknown input, fk :

Rnx × Rnu → Rnx is a given non-linear function, and Gk ∈ Rnx×nw is a
known matrix.

Assume that:

1 The initial state x1 is a realization of X1, which is assumed to be approx-
imately symmetric and to have known mean x̄ ∈ Rnx and covariance
P̄ ∈ Rnx×nx . For short, we denote X1 ∼ (x̄, P̄).

2 The sequence {wk} is a realization of an uncorrelated SP {Wk}, with
an approx. symmetric Wk ∼ (0,Qk), where Qk ∈ Rnw×nw is known.

3
{
{Wk} ,X1

}
is uncorrelated.
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Problem Definition

Measurement Equation:

Consider a measurement SP {Yk} and its realization {yk}, with yk+1 ∈ Rny

described by

yk+1 = hk+1 (xk+1) + vk+1 (2)

where vk+1 ∈ Rny is an unknown input and hk+1 : Rnx → Rny is a given
non-linear function.

Assume that:

1 The sequence {vk} is a realization of the uncorrelated SP {Vk}, with
approx. symmetric Vk ∼ (0,Rk), where Rk ∈ Rny×ny is known.

2
{
{Vk} , {Wk} ,X1

}
is uncorrelated.
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Problem Definition

Problem Statement:

The problem is to obtain an approximately optimal (MMSE) recursive filter
for estimating {xk} using {yk}, {uk}, and (1)–(2).

Comment:

In the previous section, we solved this problem using the EKF. Now, we
formulate a different solution method: the unscented Kalman filter (UKF).
Let us start by defining the so-called unscented transform (UT).

6 / 24



Unscented Transform. . .

7 / 24



Unscented Transform

Approximating the a Posteriori Distribution:

Consider a random vector X : Ω → Rn, X ∼ (x̄,Px), an arbitrary function
f : Rn → Rm and the transformed RV Y : Ω→ Rm, Y ∼ (ȳ,Py ), obtained
by

Y = f(X) (3)

The mean ȳ and the covariance Py of Y can be approximated by the un-
scented transform (UT).
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Unscented Transform

Procedure (UT):

1. Obtain the 2n + 1 σ-points X i ∈ Rn, i = 0, ..., 2n, of X, and the
respective weights:

X 0 = x̄ , ρ0 =
κ

n + κ
(4)

X j = x̄ +
√
n + κ

(√
Px
)
j
, ρ j =

1

2(n + κ)
(5)

X j+n = x̄−
√
n + κ

(√
Px
)
j
, ρ j+n =

1

2(n + κ)
(6)

for j = 1, ..., n, where κ is a scale parameter; a common choice is
κ = 3− n.

2. Transform the σ-points X i by f, i.e.:

Y i = f
(
X i
)
∈ Rm (7)

for i = 0, ..., 2n.
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Unscented Transform

3. Approximate the a posteriori mean and covariance by sample statistics
using the transformed σ-points Y i and the weights defined in (4)–(7):

ȳ ≈
2n∑
i=0

ρiY i (8)

P̄
y ≈

2n∑
i=0

ρi
(
Y i − ȳ

)(
Y i − ȳ

)T
(9)
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Unscented Transform

Comments:

1. Note that the set {X i , i = 0, ..., 2n} is a deterministic sample of X.

2. We know that, alternatively, the a posteriori mean and covariance can
be approximated by first linearizing f and then using the linearity prop-
erty of E (.).

3. In general, the UT approximation is as good as the one obtained by the
2nd-order functional approximation of f. In particular, if the a priori
RV X is Gaussian, the UT is 3rd-order accurate.

4. The UT proposal was motivated by the fact that it is easier to approx-
imate a probability distribution than a function (Julier & Uhlmann,
2004).

5. From now on, step 1 of the UT procedure is shortely denoted by{(
X i , ρi

)
, i = 0, ..., 2n

}
← SP(x̄,Px) (10)
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Unscented Transform

Comments (cont.):

6.
(√

Px
)
j

denotes the j-th column of
√

Px .

7. The sample mean and sample covariance of {X i , i = 0, ..., 2n} are
equal to the (theoretical) mean and covariance of X, respectively.

8. Even though the weights ρi do not belong to the interval [0, 1], their
sum is equal to 1. In fact, this is a necessary condition for the property
in item 7 to hold.
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Discrete Unscented Kalman Filter

Formulation Overview:

The Discrete Unscented Kalman Filter (DUKF) has the same structure as
the DEKF. The only difference between them is that the former approximates
the predictive expected values of the prediction phase by using the UT
(instead of Taylor-series linearization).
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Discrete Unscented Kalman Filter

Obtaining the σ-points:

Define the augmented state RV

aXk ,

 Xk

Wk

Vk+1

 ∈ Rna (11)

where na , nx + nw + ny .

From the problem definition and using the adopted notation for the filtered
mean and covariance, the mean and covariance of aXk can be immediately
obtained as

ax̄k ,

 x̂k|k
0nw×1
0ny×1

 , aPk ,

 Pk|k 0nx×nw 0nx×ny
0nw×nx Qk 0nw×ny
0ny×nx 0ny×nw Rk+1

 (12)
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Discrete Unscented Kalman Filter

Obtaining the σ-points (cont.):

The σ-points aX i
k ∈ Rna of the augmented state vector aXk are given by

{(
aX i

k , ρ
i
)
, i = 0, ..., 2na

}
← SP (ax̄k ,

a Pk) (13)

and can be partitioned as

aX i
k ,

 X i
k

W i
k

V ik+1

 (14)

where X i
k ∈ Rnx ,W i

k ∈ Rnw , and V ik+1 ∈ Rny are sample points of Xk , Wk ,
and Vk+1, respectively.
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Discrete Unscented Kalman Filter

Transforming the σ-points:

The σ-points X i
k andW i

k , when transformed by (1), give rise to the σ-points
of the predictive state, X i

k+1|k ∈ Rnx :

X i
k+1|k = fk

(
X i
k ,uk

)
+ GkW i

k (15)

for i = 0, ..., 2na.

On the other hand, X i
k+1|k and V ik+1, when transformed by (2), give rise to

the σ-points of the predictive measure:

Y i
k+1|k = hk+1

(
X i
k+1|k

)
+ V ik+1 (16)

for i = 0, ..., 2na.
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Discrete Unscented Kalman Filter

Discrete-Time Prediction:

The predictive expected values are then immediately approximated by sam-
ple statistics on the predictive σ-points, i.e.:

x̂k+1|k ≈
2na∑
i=0

ρi X i
k+1|k (17)

Pk+1|k ≈
2na∑
i=0

ρi
(
X i
k+1|k − x̂k+1|k

)(
X i
k+1|k − x̂k+1|k

)T
(18)

ŷk+1|k ≈
2na∑
i=0

ρi Y i
k+1|k (19)

...
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Discrete Unscented Kalman Filter

...

Py
k+1|k ≈

2na∑
i=0

ρi
(
Y i
k+1|k − ŷk+1|k

)(
Y i
k+1|k − ŷk+1|k

)T
(20)

Pxy
k+1|k ≈

2na∑
i=0

ρi
(
X i
k+1|k − x̂k+1|k

)(
Y i
k+1|k − ŷk+1|k

)T
(21)
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Discrete Unscented Kalman Filter

Update:

The update step of the DUKF is carried out as in the DEKF, i.e., by com-
puting

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
yk+1 − ŷk+1|k

)
(22)

Pk+1|k+1 = Pk+1|k − Pxy
k+1|k

(
Py
k+1|k

)−1 (
Pxy
k+1|k

)T
(23)

where Kk+1 is the Kalman gain, which is given by

Kk+1 = Pxy
k+1|k

(
Py
k+1|k

)−1
(24)
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Discrete Unscented Kalman Filter

Comments:

Although the DUKF and DEKF have the same order of complexity
(Wan & Merwe, 2000), in practice, the former is often more compu-
tationaly demanding. This is justified mostly by the need to compute
a matrix square root (see equations (13) and (5)–(6)) at each filter
iteration.

For obtaining matrix square roots, we usually adopt the Cholesky fac-
torization.

Although in theory it is expected a better perfomance of the DUKF
compared to the DEKF (for the same tuning), in problems that do not
contain strong nonlinearities, they may be indistinguishable.

...
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Discrete Uscented Kalman Filter

Comments (cont.):

Note that the DUKF is easier to implement than the DEKF, since the
former does not require the computation of Jacobians. Additionally,
different from DEKF, the DUKF can be applied to systems containing
non-smoothness in fk or hk+1.

Such as the EKF, for the UKF to be stable and to show a good con-
vergence rate, we must tune the matrices P̄ and Qk (we are going to
see that in the next computational exercise).
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