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Problem Definition

State Equation:

Consider a continuous state SP
{

X(t)
}

and its realization
{

x(t)
}

, with
x(t) ∈ Rnx dynamically described by

ẋ(t) = f
(
x(t),u(t)

)
+ g

(
x(t)

)
w(t) (1)

where u(t) ∈ Rnu is a known input, w(t) ∈ Rnw is an unknown input, and
f : Rnx × Rnu → Rnx and g : Rnx → Rnx×nw are given non-linear functions.

Assume that:

1 The initial state x(t0) is a realization of X(t0) ∼ (x̄, P̄), where x̄ ∈ Rnx

and P̄ ∈ Rnx×nx are known.

2 The signal
{

w(t)
}

is a realization of the uncorrelated SP
{

W(t)
}

, with
W(t) ∼ (0,Q(t)), where Q(t) ∈ Rnw×nw is known.

3
{{

W(t)
}
,X(t0)

}
is uncorrelated.
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Problem Definition

Measurement Equation:

Consider a measurement SP {Yk} and its realization {yk}, with yk+1 ∈ Rny

described by

yk+1 = hk+1 (xk+1) + vk+1 (2)

where vk+1 ∈ Rny is an unknown input and hk+1 : Rnx → Rny is a given
non-linear function.

Assume that:

1 The sequence {vk} is a realization of the uncorrelated SP {Vk}, with
Vk ∼ (0,Rk), where Rk ∈ Rny×ny is known.

2
{
{Vk} , {Wk} ,X1

}
is uncorrelated.
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Problem Definition

Problem Statement:

The problem is to obtain an approximately optimal (MMSE) recursive filter
to estimate

{
x(t)

}
using {yk},

{
u(t)

}
, and (1)–(2).

Comment:

In the previous section, we solved this problem using the CDEKF. Now, we
formulate a different solution method: the continuous-discrete unscented
Kalman filter (CDUKF). Let us start by defining the unscented integration
(UI).
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Unscented Integration

Approximating the a Posteriori Distribution:

Consider the RVs X(t1) : Ω → Rnx and W : Ω → Rnw as well as the
differential equation:

Ẋ(t) = f(X(t),W) (3)

Assume that:

X(t1) has known mean and covariance x̄(t1), P(t1).

W has zero mean and known covariance Q.

W and X(t1) are uncorrelated.

The mean x̄(t2) and the covariance P(t2) of X(t2) at t2 > t1 can be ap-
proximated by the unscented integration (UI).
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Unscented Integration

Procedure (UI):

1. Obtain the σ-points aX i (t1) , [X i (t1)T (W i )T]T ∈ Rna of the aug-
mented state aX(t1) , [X(t1)T WT]T ∈ Rna , with na = nx + nw , as
well as the respective weights:{(

aX i (t1), ρi
)
, i = 0, ..., 2na

}
← SP

(
ax̄(t1),a P(t1)

)
(4)

where

ax̄(t1) =

[
x̄(t1)
0nw×1

]
, aP(t1) =

[
P(t1) 0nx×nw

0nw×nx Q

]
(5)

2. Integrate the following ODEs from t1 to t2:

Ẋ i (t) = f
(
X i (t),W i

)
, (6)

with initial conditions X i (t1), to obtain X i (t2), for i = 0, ..., 2na.
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Unscented Integration

3. Approximate the a posteriori mean and covariance by sample
statistics using the transformed σ-points X i (t2), i.e.:

x̄(t2) ≈
2na∑
i=0

ρiX i (t2) (7)

P(t2) ≈
2na∑
i=0

ρi
(
X i (t2)− x̄(t2)

)(
X i (t2)− x̄(t2)

)T
(8)
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Unscented Integration

Comments:

1. Note that the set {aX i (t1), i = 0, ..., 2na} is a deterministic sample of
aX(t1).

2. We know that, alternatively, the a posteriori mean and covariance can
be approximated by first linearizing f and then using the linearity prop-
erty of E (.).

3. In general, the UI approximation is as good as the one obtained by the
2nd-order functional approximation of f. In particular, if the a priori
RV aX(t1) is Gaussian, the UI is 3rd-order accurate.

4. A procedure that is equivalent (one must verify!) to the afore-described
UI is presented in (Sarkka, 2007).
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Continuous-Discrete Unscented Kalman Filter

Formulation Overview:

The continuous-discrete unscented Kalman filter (CDUKF) has the same
structure as the CDEKF. The only difference between them is that the
former approximates the predictive expected values of the prediction phase
by using both UT and UI instead of Taylor-series linearization.
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Continuous-Discrete Unscented Kalman Filter

Obtain the σ-points:

Consider the system (1)–(2) and define the augmented state RV

aX(tk) ,

 X(tk)
W(tk)
Vk+1

 ∈ Rna (9)

where na , nx + nw + ny .

From the problem definition and using the notation so far adopted for filtered
mean and covariance, we obtain the mean and covariance of aX(tk) as

ax̄(tk) ,

 x̂k|k
0nw×1
0ny×1

 , aP(tk) ,

 Pk|k 0nx×nw 0nx×ny
0nw×nx Q(tk) 0nw×ny
0ny×nx 0ny×nw Rk+1

(10)
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Continuous-Discrete Unscented Kalman Filter

Obtain the σ-points (cont.):

The σ-points aX i (tk) ∈ Rna of aX(tk) are given by

{(
aX i (tk), ρi

)
, i = 0, ..., 2na

}
← SP

(
ax̄(tk),a P(tk)

)
(11)

and can be partitioned as

aX i (tk) ,

 X i (tk)
W i (tk)
V ik+1

 (12)

where X i (tk) ∈ Rnx , W i (tk) ∈ Rnw , and V ik+1 ∈ Rny are σ-points of X(tk),
W(tk), and Vk+1, respectively.
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Continuous-Discrete Unscented Kalman Filter

Transforming the σ-points:

Consider the σ-points X i (tk) as initial conditions and integrate the following
ODEs from tk to tk+1:

Ẋ i (t) = f
(
X i (t),u(tk)

)
+ g

(
X i (t)

)
W i (tk), (13)

to obtain the σ-points X i
k+1|k , X i (tk+1) of the predictive state, for i =

0, ..., 2na. In this integration, consider that u(t) and W i (t) keep constant
during the time interval t ∈ [tk , tk+1].

The σ-points X i
k+1|k and V ik+1, when transformed by (2), give rise to the

σ-points of the predictive measure:

Y i
k+1|k = hk+1

(
X i
k+1|k

)
+ V ik+1 (14)

for i = 0, ..., 2na.
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Continuous-Discrete Unscented Kalman Filter

Continuous-Time Prediction:

The predictive expected values are then immediately approximated by sam-
ple statistics on the predictive σ-points, i.e.:

x̂k+1|k ≈
2na∑
i=0

ρi X i
k+1|k (15)

Pk+1|k ≈
2na∑
i=0

ρi
(
X i
k+1|k − x̂k+1|k

)(
X i
k+1|k − x̂k+1|k

)T
(16)

ŷk+1|k ≈
2na∑
i=0

ρi Y i
k+1|k (17)

...
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Continuous-Discrete Unscented Kalman Filter

...

Py
k+1|k ≈

2na∑
i=0

ρi
(
Y i
k+1|k − ŷk+1|k

)(
Y i
k+1|k − ŷk+1|k

)T
(18)

Pxy
k+1|k ≈

2na∑
i=0

ρi
(
X i
k+1|k − x̂k+1|k

)(
Y i
k+1|k − ŷk+1|k

)T
(19)
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Continuous-Discrete Unscented Kalman Filter

Update:

The update step of the CDUKF is carried out as in the DUKF, i.e., by
computing

x̂k+1|k+1 = x̂k+1|k + Kk+1

(
yk+1 − ŷk+1|k

)
(20)

Pk+1|k+1 = Pk+1|k − Pxy
k+1|k

(
Py
k+1|k

)−1 (
Pxy
k+1|k

)T
(21)

where Kk+1 is the Kalman gain, which is given by

Kk+1 = Pxy
k+1|k

(
Py
k+1|k

)−1
(22)
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Continuous-Discrete Unscented Kalman Filter

Comments:

We expect a considerably higher computational burden of the CDUKF
compared to the DUKF, since at each iteration, it is necessary to nu-
merically integrate 2na + 1 ODEs.

The continuous-discrete formulation has the following advantages: 1) it
does not require the time discretization of the time-continuous model;
2) it allows a simpler implementation, since the continuous-time model
is generally more compact; and 3) it is attractive for augmented adap-
tive filters, since the parameters of the continuous-time model have
physical meaning.
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