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Problem Definition

State Equation:

Consider a state SP {Xy} and its realization {xx}, with x, € R"* dynami-
cally described by

X1 = i (X, uk) + Grwy (1)

where u, € R™ is a known input, wy, € R™ is an unknown input, fy :
R™ x R™ — R"™ is a given non-linear function, and G, € R™*™ is 3
known matrix.

Assume that:
1 The initial state x; is a realization of X;, which is assumed to be
Gaussian and to have known mean X € R™ and covariance P € R™*"x_
For short, we denote X; ~ N(x, P).
2 The sequence {w} is a realization of an uncorrelated SP {W/,}, with
W, ~ N(0,Qk), where Qg € R™*™ is known.
3 {{Wy}, X1} is uncorrelated.
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Problem Definition

Measurement Equation:

Consider a measurement SP {Y} and its realization {y, }, withy,,; € R™
described by

Yir1 = b1 (Ret1) + Vit (2)

where vi 1 € R is an unknown input and hy; : R™ — R™ is a given
non-linear function.

Assume that:

1 The sequence {vk} is a realization of the uncorrelated SP {V}, with
Vi ~ N(0,Rg), where Rx € R™*" is known.

2 {{Vi},{Wy}, X1} is uncorrelated.
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Problem Definition

Problem Statement:

The problem is to obtain an approximately optimal (MMSE) recursive filter
for estimating {xx} using {y,}, {ux}, and (1)—(2).

Comment:

In the previous sections, we solved this problem using the EKF and the UKF.

Now, we formulate a different solution method: the ensemble Kalman filter
(EnKF).
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Discrete Ensemble Kalman Filter

Formulation Overview:

The Discrete Ensemble Kalman Filter (DEnKF) has the same structure as
the DUKF. The only difference between them is that the former approxi-
mates the predictive expected values of the prediction phase by using statis-
tics over a random sample (rather than over the o-points) and, instead of
updating the mean and covariance, it updates the particles.
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Discrete Ensemble Kalman Filter

Random Sampling:

Respecting the statistical models established in the problem definition, we
can draw the following samples from the stochastic inputs of the system:

@ Initial state Xj:

X{|1~J\/'(>‘<,l5), i=1,...,N (3)

@ State noise W:

Wi~ N(0n,x1,Qk), i=1,....,N (4)

@ Measurement noise V1:

V/I;-f-l NN(Onyxl, Rk+1)7 = 17 0009 N (5)
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Discrete Ensemble Kalman Filter

Sample Transform:

By transforming the points Xl£|k e W,’< through (1), we obtain the predictive

state sample X}, |, € R™,i=1,..., N, with

k+1|

Xk = <X1£|k’ “k) + G (6)

On the other hand, by transforming the points X1£+1\k and Vli+1 through the

measurement equation (2), we obtain the predictive measurement sample
Vi ER™,i=1,...,N:

yll;+1|k =hia <Xli+l|k> + Vit (7)

10/17



Discrete Ensemble Kalman Filter

Discrete-time Prediction:

Therefore, the predictive expected values can be estimated using sampling
statistics over y;(H'k and Xli+1\k' fori=1,...,N, ie,

N
- 1 i
Xkt1lk =~ N Z Xli+1|k (8)
i=1
1 N

-~ i o i 5 T
Pivie ® 1 > (Xk+1|k - xk+1|k) (Xk+1|k - Xk+1|k) (9)
i=1

N

. 1 ;

Yir1k & E itk (10)
i=1
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Discrete Ensemble Kalman Filter

(cont.)

N

S p— > (Vi -9 Vi~ G
k+1k ~ Ny 1 k+1|k — Yk+1|k k+1lk — Yk+1]k
i=1

N

w oo 1 i & j o T
Pk ™ y—1 > (Xk+l|k - Xk+1lk> (yk+1|k - Yk+1|k> (12)
i=1
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Discrete Ensemble Kalman Filter

Updating/Filtering:

Now, we simply use the classical update equations of the Kalman filter to
compute the filtered state sample:

X1 = X + Kir <Yk+1 - yIi<+1|k> (13)

for i =1,..., N, where Ky is the Kalman gain, given by

-1
Kirn = Py (Phoae) (14)
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Discrete Ensemble Kalman Filter

...Updating/Filtering:

Finally, by using sampling statistics, we can immediately approximate the
filtered mean and covariance:

N
- 1 i
Rit1lk+1 ¥ > Xk (15)
=
1 < ; . ; N T
Prrijer 1 > (Xk+1|k+1 - xk+1|k+1> (Xk+1|k+1 - xk+1|k+1>
=i
(16)
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Discrete Ensemble Kalman Filter

Comments:

@ The EnKF belongs to the class of particle filters (Daum and Huang,
2003; Kotecha and Djuric, 2003).

@ The EnKF is widely explored in the weather forcasting literature. This
area deals with nonlinear models of high order, with very uncertain
initial estimates, and, commonly uses a large number of sensors (Da-
ley,1991; Kalnay, 2003; Evensen, 1997).

@ As reported in the literature, a small number N of samples (particles)
is sufficient for the EnKF to show a good performance.
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