# Optimal Filtering with Aerospace Applications Chapter 9: Attitude Determination for Drones 

Prof. Dr. Davi Antônio dos Santos Instituto Tecnológico de Aeronáutica www.professordavisantos.com

São José dos Campos - SP 2023

## Contents

(1) Introduction

(2) Kinematic Equations
(3) Sensor Modeling
(4) Problem Statement

(5) Problem Solution

Introduction. . .

## Introduction

## Scope of the Chapter

- This chapter is concerned with a three-dimensional attitude determination scheme for drones.
- The adopted attitude/navigation sensors are rate gyros, accelerometers, and magnetometers, all three-axial.
- This presentation only formulates the problem. The problem solution will be presented by the students, using CDEKF, CDUKF, and CDEnKF as the final evaluation of the course, according to a specific assignment.


## Introduction

## Notation

- $\vec{a}$ : geometric (or physical) vector.
- â: geometric (or physical) vector.
- $B, G$ : tridimensional points.
- $\mathcal{S}_{b} \triangleq\left\{B ; \hat{x}_{b}, \hat{y}_{b}, \hat{z}_{b}\right\}$ : body Cartesian coordinate system (CCS).
- $\mathcal{S}_{g} \triangleq\left\{G ; \hat{x}_{g}, \hat{y}_{g}, \hat{z}_{g}\right\}$ : ground CCS.



## Introduction

## Notation (cont.)

- $\mathbf{a}_{b} \in \mathbb{R}^{3}$ : representation of $\vec{a}$ in $\mathcal{S}_{b}$ (algebraic vector).
- $\mathbf{a}_{g} \in \mathbb{R}^{3}$ : representation of $\vec{a}$ in $\mathcal{S}_{g}$ (algebraic vector).
- $\mathbf{D}^{b / g} \in \mathrm{SO}(3)$ : attitude matrix of $\mathcal{S}_{b}$ w.r.t. $\mathcal{S}_{g}$. ${ }^{1}$

We can convert representations of a given geometric vector as follows:

$$
\mathbf{a}_{b}=\mathbf{D}^{b / g} \mathbf{a}_{g}
$$

From this and the definition of $\mathrm{SO}(3)$, we see that

$$
\left(\mathbf{D}^{b / g}\right)^{-1}=\left(\mathbf{D}^{b / g}\right)^{\mathrm{T}}=\mathbf{D}^{g / b}
$$

${ }^{1} \mathrm{SO}(3) \triangleq\left\{\mathbf{D} \in \mathbb{R}^{3 \times 3}: \mathbf{D D}^{\mathrm{T}}=\mathbf{I}_{3}\right\}$ is the special orthogonal group.

## Introduction

## Notation (cont.)

Consider the elementary rotation matrices (about axes 1,2 , and 3 , resp.):

$$
\begin{gathered}
\mathbf{D}_{1}(\varrho)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{c} \varrho & \mathrm{~s} \varrho \\
0 & -\mathrm{s} \varrho & \mathrm{c} \varrho
\end{array}\right] \quad \mathbf{D}_{2}(\varrho)=\left[\begin{array}{ccc}
\mathrm{c} \varrho & 0 & -\mathrm{s} \varrho \\
0 & 1 & 0 \\
\mathrm{~s} \varrho & 0 & \mathrm{c} \varrho
\end{array}\right] \\
\mathbf{D}_{3}(\varrho)=\left[\begin{array}{ccc}
\mathrm{c} \varrho & \mathrm{~s} \varrho & 0 \\
-\mathrm{s} \varrho & \mathrm{c} \varrho & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

For example, considering a 1-2-3 sequence of rotations of angles denoted by $\phi, \theta$, and $\psi$, respectively, the relationship between these (Euler) angles and the attitude matrix is

$$
\mathbf{D}^{b / g}=\mathbf{D}_{3}(\psi) \mathbf{D}_{2}(\theta) \mathbf{D}_{1}(\phi)
$$

## Kinematic equations...

## Kinematic Equations

## Attitude Kinematics in Euler Angles 1-2-3

We can show that the attitude kinematics can be described in Euler angles in the 1-2-3 sequence by

$$
\begin{equation*}
\dot{\boldsymbol{\alpha}}^{b / g}=\mathbf{A}\left(\boldsymbol{\alpha}^{b / g}\right) \boldsymbol{\omega}_{b}^{b / g} \tag{1}
\end{equation*}
$$

where $\boldsymbol{\alpha}^{b / g} \triangleq(\phi, \theta, \psi), \boldsymbol{\omega}_{b}^{b / g} \in \mathbb{R}^{3}$ is the $\mathcal{S}_{b}$ representation of the angular velocity of $\mathcal{S}_{b}$ w.r.t. $\mathcal{S}_{g}$, and

$$
\mathbf{A}\left(\boldsymbol{\alpha}^{b / g}\right) \triangleq\left[\begin{array}{ccc}
\mathrm{c} \psi / \mathrm{c} \theta & -\mathrm{s} \psi / \mathrm{c} \theta & 0 \\
\mathrm{~s} \psi & \mathrm{c} \psi & 0 \\
-\mathrm{c} \psi \mathrm{~s} \theta / \mathrm{c} \theta & \mathrm{~s} \psi \mathrm{~s} \theta / \mathrm{c} \theta & 1
\end{array}\right]
$$

## Sensor modeling. . .

## Sensor Modeling

## Rate Gyro

Its measure $\check{\boldsymbol{\omega}}_{b} \in \mathbb{R}^{3}$ can be modeled by

$$
\begin{equation*}
\check{\omega}_{b}=\omega_{b}^{b / g}+\beta_{b}^{g y}+\mathbf{w}_{b}^{g y} \tag{2}
\end{equation*}
$$

where $\mathbf{w}_{b}^{g y} \in \mathbb{R}^{3}$ is a zero-mean white Gaussian noise with covariance $\mathbf{Q}^{g y}$, which, for simplicity, is assumed to be constant and known, and $\boldsymbol{\beta}_{b}^{g y} \in \mathbb{R}^{3}$ is a drifting bias described by the following Wiener process:

$$
\begin{equation*}
\dot{\boldsymbol{\beta}}_{b}^{g y}=\mathbf{w}_{b}^{d, g y} \tag{3}
\end{equation*}
$$

where $\mathbf{w}_{b}^{d, g y}$ is assumed to be a zero-mean white Gaussian noise with known covariance $\mathbf{Q}^{d, g y}$.

## Sensor Modeling

## Accelerometer

Its measure $\check{\mathbf{a}}_{b} \in \mathbb{R}^{3}$ can be modeled by

$$
\begin{equation*}
\check{\mathbf{a}}_{b}=\mathbf{D}^{b / g}\left(\dot{\mathbf{v}}_{g}^{b / g}-\mathbf{g}_{g}\right)+\mathbf{w}_{b}^{a c} \tag{4}
\end{equation*}
$$

where $\mathbf{g}_{g} \triangleq-g \mathbf{e}_{3}$ is the gravity acceleration vector, and $\mathbf{w}_{b}^{a c} \in \mathbb{R}^{3}$ is assumed to be a zero-mean white Gaussian noise with known covariance $\mathbf{Q}^{a c}$.

Assume that $\dot{\mathbf{v}}_{g}^{b / g}=0$ along all the flight, which is a reasonable simplification as one could verify by an MAV flight control simulator ${ }^{2}$.

[^0]
## Sensor Modeling

## Magnetometer

Its measure $\check{\mathbf{m}}_{b} \in \mathbb{R}^{3}$ can be modeled by

$$
\begin{equation*}
\check{\mathbf{m}}_{b}=\mathbf{D}^{b / g} \mathbf{m}_{g}+\mathbf{w}_{b}^{m g} \tag{5}
\end{equation*}
$$

where $\mathbf{m}_{g} \in \mathbb{R}^{3}$ is the $\mathcal{S}_{g}$ representation of the local magnetic field and $\mathbf{w}_{b}^{m g} \in \mathbb{R}^{3}$ is assumed to be a zero-mean white Gaussian noise with known covariance $\mathbf{Q}^{m g}$.

Assume that $\mathbf{m}_{g}$ keeps constant along the drone flight.

Problem statement...

## Problem Statement

## Problem

The problema is to estimate $\alpha^{b / g}$ and $\beta_{b}^{g y}$, by a recursive approximately optimal filter, using:

- the models (1)-(5) and
- the measurements $\check{\mathbf{a}}_{b}, \check{\boldsymbol{\omega}}_{b}$, and $\check{\mathbf{m}}_{b}$.


## Problem solution...

## Problem Solution

## State Equation

The models (1)-(3) can be put together in the following state equation:

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}, \mathbf{u})+\mathbf{G}(\mathbf{x}) \mathbf{w}, \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{x} \triangleq\left[\left(\boldsymbol{\alpha}^{b / g}\right)^{\mathrm{T}}\left(\boldsymbol{\beta}_{b}^{g y}\right)^{\mathrm{T}}\right]^{\mathrm{T}} \in \mathbb{R}^{6} \\
& \mathbf{u} \triangleq \check{\boldsymbol{\omega}}_{b} \in \mathbb{R}^{3} \\
& \mathbf{w} \triangleq\left[\left(\mathbf{w}_{b}^{g y}\right)^{\mathrm{T}}\left(\mathbf{w}_{b}^{d, g y}\right)^{\mathrm{T}}\right]^{\mathrm{T}} \in \mathbb{R}^{6}
\end{aligned}
$$

## Problem Solution

## State Equation (cont.)

$$
\begin{gathered}
\mathbf{f}(\mathbf{x}, \mathbf{u}) \triangleq\left[\begin{array}{c}
\mathbf{A}\left(\boldsymbol{\alpha}^{b / g}\right)\left(\check{\boldsymbol{\omega}}_{b}^{b / g}-\boldsymbol{\beta}_{b}^{g y}\right) \\
\mathbf{0}_{3 \times 1}
\end{array}\right] \in \mathbb{R}^{6} \\
\mathbf{G}(\mathbf{x}) \triangleq\left[\begin{array}{cc}
-\mathbf{A}\left(\boldsymbol{\alpha}^{b / g}\right) & \mathbf{0}_{3 \times 3} \\
\mathbf{0}_{3 \times 3} & \mathbf{I}_{3}
\end{array}\right] \in \mathbb{R}^{6 \times 6}
\end{gathered}
$$

## Problem Solution

## Measurement Equation

Equations (4) and (5) can be put together into the following discrete-time measurement equation:

$$
\begin{equation*}
\mathbf{y}_{k}=\mathbf{h}\left(\mathbf{x}_{k}\right)+\mathbf{v}_{k} \tag{7}
\end{equation*}
$$

where (for simplicity, we omit the time $t_{k}$ from the time-varying quantities)

$$
\begin{gathered}
\mathbf{y}_{k} \triangleq\left[\begin{array}{c}
\check{\mathbf{a}}_{b} / g \\
\check{\mathbf{m}}_{b} /\left\|\mathbf{m}_{g}\right\|
\end{array}\right], \mathbf{h}\left(\mathbf{x}_{k}\right) \triangleq\left[\begin{array}{c}
\mathbf{D}\left(\boldsymbol{\alpha}^{b / g}\right) \mathbf{e}_{3} \\
\mathbf{D}\left(\boldsymbol{\alpha}^{b / g}\right) \mathbf{n}
\end{array}\right], \mathbf{v}_{k} \triangleq\left[\begin{array}{c}
\mathbf{w}_{b}^{a c} / g \\
\mathbf{w}_{b}^{m g} /\left\|\mathbf{m}_{g}\right\|
\end{array}\right] \\
\mathbf{D}\left(\boldsymbol{\alpha}^{b / g}\right) \triangleq \mathbf{D}_{3}(\psi) \mathbf{D}_{2}(\theta) \mathbf{D}_{1}(\phi), \mathbf{n} \triangleq \mathbf{m}_{g} /\left\|\mathbf{m}_{g}\right\|
\end{gathered}
$$

with $\phi \triangleq \mathbf{e}_{1}^{\mathrm{T}} \boldsymbol{\alpha}^{b / g}, \theta \triangleq \mathbf{e}_{2}^{\mathrm{T}} \boldsymbol{\alpha}^{b / g}, \psi \triangleq \mathbf{e}_{3}^{\mathrm{T}} \boldsymbol{\alpha}^{b / g}$, and $\mathbf{e}_{i}, \forall i$, denoting the standard unit vectors.

References...

## References

䍰 Santos, D. A. Dynamic Modeling and Control of Multicopters. Chapter 4. Available in www.professordavisantos.com. ITA, 2020.


[^0]:    ${ }^{2}$ IMAV-M is available in https://github.com/daviasantos/IMAV-M.

