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Introduction

Scope of the Chapter

This chapter is concerned with a three-dimensional attitude determi-
nation scheme for drones.

The adopted attitude/navigation sensors are rate gyros, accelerometers,
and magnetometers, all three-axial.

This presentation only formulates the problem. The problem solution
will be presented by the students, using CDEKF, CDUKF, and CDEnKF
as the final evaluation of the course, according to a specific assignment.
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Introduction

Notation

#»a : geometric (or physical) vector.

â: geometric (or physical) vector.

B,G : tridimensional points.

Sb , {B; x̂b, ŷb, ẑb}: body Cartesian coordinate system (CCS).

Sg ,
{
G ; x̂g , ŷg , ẑg

}
: ground CCS.
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Introduction

Notation (cont.)

ab ∈ R3: representation of #»a in Sb (algebraic vector).

ag ∈ R3: representation of #»a in Sg (algebraic vector).

Db/g ∈ SO(3): attitude matrix of Sb w.r.t. Sg . 1

We can convert representations of a given geometric vector as follows:

ab = Db/gag

From this and the definition of SO(3), we see that(
Db/g

)−1
=
(
Db/g

)T
= Dg/b

1SO(3) , {D ∈ R3×3 : DDT = I3} is the special orthogonal group.
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Introduction

Notation (cont.)

Consider the elementary rotation matrices (about axes 1, 2, and 3, resp.):

D1(%) =

 1 0 0
0 c% s%
0 −s% c%

 D2(%) =

 c% 0 −s%
0 1 0
s% 0 c%



D3(%) =

 c% s% 0
−s% c% 0

0 0 1


For example, considering a 1-2-3 sequence of rotations of angles denoted by
φ, θ, and ψ, respectively, the relationship between these (Euler) angles and
the attitude matrix is

Db/g = D3(ψ)D2(θ)D1(φ)
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Kinematic Equations

Attitude Kinematics in Euler Angles 1-2-3

We can show that the attitude kinematics can be described in Euler angles
in the 1-2-3 sequence by

α̇b/g = A
(
αb/g

)
ω

b/g
b (1)

where αb/g , (φ, θ, ψ), ω
b/g
b ∈ R3 is the Sb representation of the angular

velocity of Sb w.r.t. Sg , and

A
(
αb/g

)
,

 cψ/cθ −sψ/cθ 0
sψ cψ 0

−cψsθ/cθ sψsθ/cθ 1


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Sensor Modeling

Rate Gyro

Its measure ω̌b ∈ R3 can be modeled by

ω̌b = ω
b/g
b + βgy

b + wgy
b (2)

where wgy
b ∈ R3 is a zero-mean white Gaussian noise with covariance Qgy ,

which, for simplicity, is assumed to be constant and known, and βgy
b ∈ R3

is a drifting bias described by the following Wiener process:

β̇gy
b = wd ,gy

b (3)

where wd ,gy
b is assumed to be a zero-mean white Gaussian noise with known

covariance Qd ,gy .
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Sensor Modeling

Accelerometer

Its measure ǎb ∈ R3 can be modeled by

ǎb = Db/g
(
v̇
b/g
g − gg

)
+ wac

b (4)

where gg , −ge3 is the gravity acceleration vector, and wac
b ∈ R3 is

assumed to be a zero-mean white Gaussian noise with known covariance
Qac .

Assume that v̇
b/g
g = 0 along all the flight, which is a reasonable simplifica-

tion as one could verify by an MAV flight control simulator 2.

2IMAV-M is available in https://github.com/daviasantos/IMAV-M.
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Sensor Modeling

Magnetometer

Its measure m̌b ∈ R3 can be modeled by

m̌b = Db/gmg + wmg
b (5)

where mg ∈ R3 is the Sg representation of the local magnetic field and
wmg

b ∈ R3 is assumed to be a zero-mean white Gaussian noise with known
covariance Qmg .

Assume that mg keeps constant along the drone flight.
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Problem Statement

Problem

The problema is to estimate αb/g and βgy
b , by a recursive approximately

optimal filter, using:

the models (1)–(5) and

the measurements ǎb, ω̌b, and m̌b.
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Problem Solution

State Equation

The models (1)–(3) can be put together in the following state equation:

ẋ = f (x,u) + G (x)w, (6)

where

x ,

[(
αb/g

)T (
βgy
b

)T]T ∈ R6

u , ω̌b ∈ R3

w ,

[(
wgy

b

)T (
wd ,gy

b

)T]T
∈ R6
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Problem Solution

State Equation (cont.)

f (x,u) ,

 A
(
αb/g

)(
ω̌

b/g
b − βgy

b

)
03×1

 ∈ R6

G(x) ,

 −A(αb/g
)

03×3

03×3 I3

 ∈ R6×6
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Problem Solution

Measurement Equation

Equations (4) and (5) can be put together into the following discrete-time
measurement equation:

yk = h (xk) + vk (7)

where (for simplicity, we omit the time tk from the time-varying quantities)

yk ,

[
ǎb/g

m̌b/‖mg‖

]
, h(xk) ,

 D
(
αb/g

)
e3

D
(
αb/g

)
n

 , vk ,

[
wac

b /g

wmg
b /‖mg‖

]

D
(
αb/g

)
, D3(ψ)D2(θ)D1(φ), n , mg/‖mg‖

with φ , eT1α
b/g , θ , eT2α

b/g , ψ , eT3α
b/g , and ei , ∀i , denoting the

standard unit vectors.
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